Skip to main content
Log in

Constructing Embedded Lattice-Based Algorithms for Multivariate Function Approximation with a Composite Number of Points

  • Published:
Constructive Approximation Aims and scope

Abstract

We approximate d-variate periodic functions in weighted Korobov spaces with general weight parameters using n function values at lattice points. We do not limit n to be a prime number, as in currently available literature, but allow any number of points, including powers of 2, thus providing the fundamental theory for construction of embedded lattice sequences. Our results are constructive in that we provide a component-by-component algorithm which constructs a suitable generating vector for a given number of points or even a range of numbers of points. It does so without needing to construct the index set on which the functions will be represented. The resulting generating vector can then be used to approximate functions in the underlying weighted Korobov space. We analyse the approximation error in the worst-case setting under both the \(L_2\) and \(L_{\infty }\) norms. Our component-by-component construction under the \(L_2\) norm achieves the best possible rate of convergence for lattice-based algorithms, and the theory can be applied to lattice-based kernel methods and splines. Depending on the value of the smoothness parameter \(\alpha \), we propose two variants of the search criterion in the construction under the \(L_{\infty }\) norm, extending previous results which hold only for product-type weight parameters and prime n. We also provide a theoretical upper bound showing that embedded lattice sequences are essentially as good as lattice rules with a fixed value of n. Under some standard assumptions on the weight parameters, the worst-case error bound is independent of d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

    Book  Google Scholar 

  2. Alomair, B., Clark, A., Poovendran, R.: The power of primes: security of authentication based on a universal hash-function family. J. Math. Cryptol. 4, 121–148 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bartel, F., Kämmerer, L., Potts, D., Ullrich, T.: On the reconstruction of functions from values at subsampled quadrature points, arXiv:2208.13597

  4. Byrenheid, G., Kämmerer, L., Ullrich, T., Volkmer, T.: Tight error bounds for rank-\(1\) lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. 136, 993–1034 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28, 2162–2188 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Lattice algorithms for multivariate approximation in periodic spaces with general weights. Contemp. Math. 754, 93–113 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Fast CBC construction of lattice algorithms for multivariate approximation with POD and SPOD weights. Math. Comput. 90, 787–812 (2021)

    Article  Google Scholar 

  8. Cools, R., Nuyens, D.: A Belgian view on lattice rules. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 3–21. Springer, Berlin (2008)

    Chapter  Google Scholar 

  9. Dick, J., Kuo, F.Y., Le Gia, Q.T., Schwab, Ch.: Multilevel higher order QMC Petrov–Galerkin discretisation for affine parametric operator equations. SIAM J. Numer. Anal. 54, 2541–2568 (2016)

    Article  MathSciNet  Google Scholar 

  10. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the Quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  Google Scholar 

  11. Dolbeault, M., Krieg, D., Ullrich, M.: A sharp upper bound for sampling numbers in \(L_2\). Appl. Comput. Harmon. Anal. 63, 113–134 (2023)

    Article  MathSciNet  Google Scholar 

  12. Dick, J., Pillichshammer, F., Waterhouse, B.J.: The construction of good extensible rank-1 lattices. Math. Comput. 77, 2345–2373 (2008)

    Article  MathSciNet  Google Scholar 

  13. Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103, 63–97 (2006)

    Article  MathSciNet  Google Scholar 

  14. Gross, C., Iwen, M.A., Kämmerer, L., Volkmer, T.: A deterministic algorithm for constructing multiple rank-\(1\) lattices of near-optimal size. Adv. Comput. Math. 47, 86 (2021)

    Article  MathSciNet  Google Scholar 

  15. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)

    Article  MathSciNet  Google Scholar 

  16. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients. Numer. Math. 140, 479–511 (2018)

    Article  MathSciNet  Google Scholar 

  17. Grošek, O., Porubský, Š: Coprime solutions to \(ax \equiv b ~(mod \, n)\). J. Math. Cryptol. 7, 217–224 (2013)

    MathSciNet  Google Scholar 

  18. Geng, J., Wang, H.: On the power of standard information for tractability for \(L_\infty \) approximation of periodic functions in the worst case setting, arXiv:2304.14748

  19. Hickernell, F.J., Hong, H.S., L’Écuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2000)

    Article  MathSciNet  Google Scholar 

  20. Hickernell, F.J., Niederreiter, H.: The existence of good extensible rank-\(1\) lattices. J. Complex. 19, 286–300 (2003)

    Article  MathSciNet  Google Scholar 

  21. Kaarnioja, V., Kuo, F.Y., Sloan, I.H.: Uncertainty quantification using periodic random variables. SIAM J. Numer. Anal. 58, 1068–1091 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kaarnioja, V., Kazashi, Y., Kuo, F.Y., Nobile, F., Sloan, I.H.: Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification. Numer. Math. 150, 33–77 (2022)

    Article  MathSciNet  Google Scholar 

  23. Kämmerer, L.: Multiple rank-1 lattices as sampling schemes for multivariate trigonometric polynomials. J. Fourier. Anal. Appl. 24, 17–44 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kämmerer, L.: Constructing spatial discretizations for sparse multivariate trigonometric polynomials that allow for a fast discrete Fourier transform. Appl. Comput. Harmon. Anal. 47, 702–729 (2019)

    Article  MathSciNet  Google Scholar 

  25. Kämmerer, L.: Multiple lattice rules for multivariate \(L_{\infty }\) approximation in the worst-case setting, arXiv:1909.02290

  26. Kämmerer, L.: Reconstructing hyperbolic cross trigonometric polynomials from sampling along rank-\(1\) lattices. SIAM J. Numer. Anal. 51, 2773–2796 (2013)

    Article  MathSciNet  Google Scholar 

  27. Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-\(1\) lattice sampling. J. Complex. 31, 543–576 (2015)

    Article  MathSciNet  Google Scholar 

  28. Krieg, D., Pozharska, K., Ullrich, M., Ullrich, T.: Sampling recovery in uniform and other norms, arXiv:2305.07539

  29. Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation. Found. Comput. Math. 21, 1141–1151 (2021)

    Article  MathSciNet  Google Scholar 

  30. Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation: Part II. J. Complex. 66, 101569 (2021)

    Article  Google Scholar 

  31. Kämmerer, L., Volkmer, T.: Approximation of multivariate periodic functions based on sampling along multiple rank-\(1\) lattices. J. Approx. Theory 246, 1–27 (2019)

    Article  MathSciNet  Google Scholar 

  32. Kuo, F.Y., Migliorati, G., Nobile, F., Nuyens, D.: Function integration, reconstruction and approximation using rank-\(1\) lattices. Math. Comput. 90, 1861–1897 (2021)

    Article  MathSciNet  Google Scholar 

  33. Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients—a survey of analysis and implementation. Found. Comput. Math. 16, 1631–1696 (2016)

    Article  MathSciNet  Google Scholar 

  34. Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient. SIAM J. Numer. Anal. 50, 3351–3374 (2012)

    Article  MathSciNet  Google Scholar 

  35. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rules for multivariate approximation in the worst case setting. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289–330. Springer, Berlin (2006)

    Chapter  Google Scholar 

  36. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rule algorithms for multivariate approximation in the average case setting. J. Complex. 24, 283–323 (2008)

    Article  MathSciNet  Google Scholar 

  37. Kuo, F.Y., Wasilkowski, G.W., Woźniakowski, H.: Multivariate \(L_{\infty }\) approximation in the worst case setting over reproducing kernel Hilbert spaces. J. Approx. Theory 152, 135–160 (2008)

    Article  MathSciNet  Google Scholar 

  38. Kuo, F.Y., Wasilkowski, G.W., Woźniakowski, H.: On the power of standard information for multivariate approximation in the worst case setting. J. Approx. Theory 158, 97–125 (2009)

    Article  MathSciNet  Google Scholar 

  39. Kuo, F.Y., Wasilkowski, G.W., Woźniakowski, H.: Lattice algorithms for multivariate \(L_{\infty }\) approximation in the worst-case setting. Constr. Approx. 30, 475–493 (2009)

    Article  MathSciNet  Google Scholar 

  40. Kuo, F.Y., Wasilkowski, G.W., Woźniakowski, H.: Correction to: Lattice algorithms for multivariate \(L_{\infty }\) approximation in the worst-case setting. Constr. Approx. 52, 177–179 (2020)

    Article  MathSciNet  Google Scholar 

  41. L’Ecuyer, P., Munger, D.: On figures of merit for randomly shifted lattice rules. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 133–159. Springer, Berlin (2012)

    Chapter  Google Scholar 

  42. Lemieux, C.: Monte Carlo and quasi-Monte Carlo sampling. Springer, New York (2009)

    Google Scholar 

  43. Leobacher, G., Pillichshammer, F.: Introduction to quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  44. Niederreiter, H.: Random Number Generation and quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  45. Novak, E., Sloan, I.H., Woźniakowski, H.: Tractability of approximation for weighted Korobov spaces on classical and quantum computers. Found. Comput. Math. 4, 121–156 (2004)

    Article  MathSciNet  Google Scholar 

  46. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information. EMS, Zürich (2008)

    Book  Google Scholar 

  47. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals. EMS, Zürich (2010)

    Google Scholar 

  48. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume III: Standard Information for Operators. EMS, Zürich (2012)

    Book  Google Scholar 

  49. Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: Kritzer, P., Niederreiter, H., Pillichshammer, F., Winterhof, A. (eds.) Uniform Distribution and Quasi-Monte Carlo Methods. Radon Series on Computational and Applied Mathematics, vol. 15, pp. 223–256. De Gruyter, New York (2014)

    Chapter  Google Scholar 

  50. Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complex. 22, 4–28 (2006)

    Article  MathSciNet  Google Scholar 

  51. Nagel, N., Schäfer, M., Ullrich, T.: A new upper bound for sampling numbers. Found. Comput. Math. 22, 445–468 (2022)

    Article  MathSciNet  Google Scholar 

  52. Potts, D., Volkmer, T.: Sparse high-dimensional FFT based on rank-\(1\) lattice sampling. Appl. Comput. Harmon. Anal. 41, 713–748 (2016)

    Article  MathSciNet  Google Scholar 

  53. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)

    Book  Google Scholar 

  54. Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complex. 14, 1–33 (1998)

    Article  MathSciNet  Google Scholar 

  55. Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complex. 17, 697–721 (2001)

    Article  MathSciNet  Google Scholar 

  56. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  57. Zeng, X.Y., Leung, K.T., Hickernell, F.J.: Error analysis of splines for periodic problems using lattice designs. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 501–514. Springer, Berlin (2006)

    Chapter  Google Scholar 

  58. Zeng, X.Y., Kritzer, P., Hickernell, F.J.: Spline methods using integration lattices and digital nets. Constr. Approx. 30, 529–555 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Australian Research Council (ARC DP210100831) and the Research Foundation—Flanders (FWO G091920N). We sincerely acknowledge the referees for detailed comments on the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Mo.

Additional information

Communicated by Wolfgang Dahmen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, F.Y., Mo, W. & Nuyens, D. Constructing Embedded Lattice-Based Algorithms for Multivariate Function Approximation with a Composite Number of Points. Constr Approx (2024). https://doi.org/10.1007/s00365-024-09688-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00365-024-09688-y

Keywords

Mathematics Subject Classification

Navigation