Skip to main content
Log in

Lattice Algorithms for Multivariate L Approximation in the Worst-Case Setting

  • Published:
Constructive Approximation Aims and scope

A Correction to this article was published on 21 January 2020

This article has been updated

Abstract

We approximate d-variate functions from weighted Korobov spaces with the error of approximation defined in the L sense. We study lattice algorithms and consider the worst-case setting in which the error is defined by its worst-case behavior over the unit ball of the space of functions. A lattice algorithm is specified by a generating (integer) vector. We propose three choices of such vectors, each corresponding to a different search criterion in the component-by-component construction. We present worst-case error bounds that go to zero polynomially with n −1, where n is the number of function values used by the lattice algorithm. Under some assumptions on the weights of the function space, the worst-case error bounds are also polynomial in d, in which case we have (polynomial) tractability, or even independent of d, in which case we have strong (polynomial) tractability. We discuss the exponents of n −1 and stress that we do not know if these exponents can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 21 January 2020

    We correct the expression for the worst-case error derived in [Kuo, Wasilkowski, Wo��niakowski, Construct. Approx. 30 (2009), 475���493] and explain that the main theorem of the paper holds with enlarged constants.

References

  1. Dick, J., Kritzer, P., Kuo, F.Y., Sloan, I.H.: Lattice-Nyström method for Fredholm integral equations of the second kind with convolution type kernels. J. Complex. 23, 752–772 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hickernell, F.J., Woźniakowski, H.: Integration and approximation in arbitrary dimensions. Adv. Comput. Math. 12, 25–58 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hickernell, F.J., Wasilkowski, G.W., Woźniakowski, H.: Tractability of linear multivariate problems in the average-case setting. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 461–494. Springer, Berlin (2008)

    Chapter  Google Scholar 

  4. Hinrichs, A., Novak, E., Vybiral, J.: Linear information versus function evaluations for L 2-approximation. J. Approx. Theory 153, 97–107 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complex. 19, 301–320 (2003)

    Article  MATH  Google Scholar 

  6. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rules for multivariate approximation in the worst-case setting. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289–330. Springer, Berlin (2006)

    Chapter  Google Scholar 

  7. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rule algorithms for multivariate approximation in the average-case setting. J. Complex. 24, 283–323 (2008)

    Article  MATH  Google Scholar 

  8. Kuo, F.Y., Wasilkowski, G.W., Woźniakowski, H.: Multivariate L approximation in the worst-case setting over reproducing kernel Hilbert spaces. J. Approx. Theory 152, 135–160 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kuo, F.Y., Wasilkowski, G.W., Woźniakowski, H.: On the power of standard information for multivariate approximation in the worst-case setting. J. Approx. Theory 158, 97–125 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, D., Hickernell, F.J.: Trigonometric spectral collocation methods on lattices. In: Cheng, S.Y., Shu, C.-W., Tang, T. (eds.) Recent Advances in Scientific Computing and Partial Differential Equations. AMS Series in Contemporary Mathematics, vol. 330, pp. 121–132. American Mathematical Society, Providence (2003)

    Google Scholar 

  11. Novak, E., Sloan, I.H., Woźniakowski, H.: Tractability of approximation for weighted Korobov spaces on classical and quantum computers. Found. Comput. Math. 4, 121–156 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift invariant reproducing kernel Hilbert spaces. Math. Comput. 75, 903–920 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM J. Numer. Anal. 40, 1650–1665 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wasilkowski, G.W., Woźniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complex. 11, 1–56 (1995)

    Article  MATH  Google Scholar 

  15. Wasilkowski, G.W., Woźniakowski, H.: Weighted tensor product algorithms for linear multivariate problems. J. Complex. 15, 402–447 (1999)

    Article  MATH  Google Scholar 

  16. Wasilkowski, G.W., Woźniakowski, H.: On the power of standard information for weighted approximation. Found. Comput. Math. 1, 417–434 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Zeng, X.Y., Leung, K.T., Hickernell, F.J.: Error analysis of splines for periodic problems using lattice designs. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 501–514. Springer, Berlin (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Y. Kuo.

Additional information

Communicated by Ian Sloan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, F.Y., Wasilkowski, G.W. & Woźniakowski, H. Lattice Algorithms for Multivariate L Approximation in the Worst-Case Setting. Constr Approx 30, 475–493 (2009). https://doi.org/10.1007/s00365-009-9075-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-009-9075-x

Keywords

Mathematics Subject Classification (2000)

Navigation