Skip to main content
Log in

Riesz Energy Problems with External Fields and Related Theory

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper, we investigate Riesz energy problems on unbounded conductors in \(\mathbb {R}^d\) in the presence of general external fields Q, not necessarily satisfying the growth condition \(Q(x)\rightarrow +\infty \) as \(|x|\rightarrow +\infty \) assumed in several previous studies. We provide sufficient conditions on Q for the existence of an equilibrium measure and the compactness of its support. Particular attention is paid to the case of the hyperplanar conductor \(\mathbb {R}^{d}\), embedded in \(\mathbb {R}^{d+1}\), when the external field is created by the potential of a signed measure \(\nu \) supported outside of \(\mathbb {R}^{d}\). Simple cases where \(\nu \) is a discrete measure are analyzed in detail. New theoretic results for Riesz potentials, in particular an extension of a classical theorem by de La Vallée Poussin, are established. These results are of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Alternative definition of a capacity of a compact set K due to de La Vallée Poussin is given as \(\textrm{cap}(K)=\max \mu (K)\), where the maximum is taken over positive measures supported on K such that \(U^\mu (x)\le 1\) on \(S_\mu \), the support of \(\mu \) (see [26, p. 139]).

  2. To avoid ambiguity, we denote by \(\infty \) the Alexandroff point of \({{\mathbb {R}}}^d\) and use the explicit notations of \(-\infty \) and \(+\infty \) in the context of the real line.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, Illinois (1970)

    MATH  Google Scholar 

  2. Bartle, R.G.: A Modern Theory of Integration. Graduate Studies in Mathematics, 32. American Mathematical Society, Providence, RI (2001)

  3. Benko, D., Dragnev, P., Orive, R.: On point-mass Riesz external fields on the real axis. J. Math. Anal. Appl. 491, 124299 (2020)

    Article  MATH  Google Scholar 

  4. Benko, D., Dragnev, P.D., Totik, V.: Convexity of harmonic densities. Rev. Mat. Iberoam. 28(4), 947–960 (2012)

    Article  MATH  Google Scholar 

  5. Bilogliadov, M.: Minimum Riesz energy problem on the hyperdisk. J. Math. Phys. 59, 013301 (2018)

    Article  MATH  Google Scholar 

  6. Bloom, T., Levenberg, N., Wielonsky, F.: Logarithmic potential theory and large deviation. Comput. Meth. Funct. Th. 15(4), 555–594 (2015)

    Article  MATH  Google Scholar 

  7. Bloom, T., Levenberg, N., Wielonsky, F.: A large deviation principle for weighted Riesz interactions. Constr. Approx. 47, 119–140 (2018)

    Article  MATH  Google Scholar 

  8. Borodachov, S.V., Hardin, D.P., Saff, E.B.: Discrete Energy on Rectifiable Sets. Springer Monographs in Mathematics, Springer, New York (2019)

    Book  MATH  Google Scholar 

  9. Brauchart, J.S., Dragnev, P.D., Saff, E.B.: Riesz extremal measures on the sphere for axis-supported external fields. J. Math. Anal. Appl. 356, 769–792 (2009)

    Article  MATH  Google Scholar 

  10. Brelot, M.: Sur le rôle du point à l’infini dans la théorie des fonctions harmoniques. Ann. Sci. Ecole Norm. Sup. 61, 301–332 (1944)

    Article  MATH  Google Scholar 

  11. Brelot, M.: Lectures in Potential Theory. Tata Institute, Bombay (1960)

    MATH  Google Scholar 

  12. Bucur, C.: Some observations on the Green function for the ball in the fractional Laplace framework. Commun. Pure Appl. Anal. 15, 657–699 (2016)

    Article  MATH  Google Scholar 

  13. Chafaï, D., Gozlan, N., Zitt, P.A.: First-order global asymptotics for confined particles with singular pair repulsion. Ann. Appl. Probab. 24(6), 2371–2413 (2014)

  14. de La Vallée-Poussin, Ch.: Potentiel et problème généralisé de Dirichlet. Math. Gazette Lond. 22, 17–36 (1938)

    Article  MATH  Google Scholar 

  15. Doob, J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  16. Dragnev, P.D., Saff, E.B.: Riesz spherical potentials with external fields and minimal energy points separation. Potent. Anal. 26, 139–162 (2007)

    Article  MATH  Google Scholar 

  17. Fuglede, B.: On the theory of potentials in locally compact spaces. Acta Math. 103(3–4), 139–215 (1960)

    Article  MATH  Google Scholar 

  18. Fuglede, B.: Some properties of the Riesz charge associated with a \(\delta \)-subharmonic function. Potent. Anal. 1, 355–371 (1992)

    Article  MATH  Google Scholar 

  19. Fuglede, B., Zorii, N.: Green kernels associated with Riesz kernels. Ann. Acad. Sci. Fenn. Math. 43, 121–145 (2018)

    Article  MATH  Google Scholar 

  20. Hardy, A.: A note on large deviations for 2D Coulomb gas with weakly confining potential. Electron. Commun. Probab. 17(19), 1–12 (2012)

    MATH  Google Scholar 

  21. Hardy, A., Kuijlaars, A.B.J.: Weakly admissible vector equilibrium problems. J. Approx. Th. 164(6), 854–868 (2012)

    Article  MATH  Google Scholar 

  22. Janssen, K.: On the Choquet charge of \(\delta \)-superharmonic functions. Potent. Anal. 12, 211–220 (2000)

    Article  MATH  Google Scholar 

  23. Kuijlaars, A.B.J., Dragnev, P.: Equilibrium problems associated with fast decreasing polynomials. Proc. Am. Math. Soc. 127, 1065–1074 (1999)

    Article  MATH  Google Scholar 

  24. Kurokawa, T., Mizuta, Y.: On the order at infinity of Riesz potentials. Hiroshima Math. J. 9(2), 533–545 (1979)

    Article  MATH  Google Scholar 

  25. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of log and Riesz gases. Invent. Math. 210(3), 645–757 (2017)

    Article  MATH  Google Scholar 

  26. Landkof, N.S.: Foundations of Modern Potential Theory, Grundlehren der mathematischen Wissenschaften 180. Springer-Verlag, New York-Heidelberg (1972)

    Google Scholar 

  27. García, A. López: Greedy energy points with external fields. Contemp. Math. 507, 189–207 (2010)

  28. Mizuta, Y.: Potential Theory in Euclidean Spaces. Gakuto International Series. Mathematical Sciences and Applications, 6. Gakkotosho Co., Ltd., Tokyo (1996)

  29. Ohtsuka, M.: On potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. A-I Math. 25, 135–352 (1961)

  30. Orive, R., Lara, J. Sánchez, Wielonsky, F.: Equilibrium problems in weakly admissible external fields created by pointwise charges. J. Approx. Theory 244, 71–100 (2019)

  31. Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  32. Riesz, M.: Intégrales de Riemann-Liouville et potentiels. Acta Szeged 9, 1–42 (1938)

    MATH  Google Scholar 

  33. Riesz, M.: L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81, 1–223 (1949)

    Article  MATH  Google Scholar 

  34. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  35. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften, vol. 316. Springer-Verlag, Berlin (1997)

  36. Simeonov, P.: A weighted energy problem for a class of admissible weights. Houston J. Math. 31(4), 1245–1260 (2005)

    MATH  Google Scholar 

  37. Sodin, M.: Hahn decomposition for the Riesz charge of \(\delta \)-subharmonic functions. Math. Scand. 83(2), 277–282 (1998)

    Article  MATH  Google Scholar 

  38. Zorii, N.: On the solvability of the Gauss variational problem. Comput. Meth. Funct. Th. 2, 427–448 (2002)

    MATH  Google Scholar 

  39. Zorii, N.V.: Equilibrium potentials with external fields. Ukrainian Math. J. 55(9), 1423–1444 (2003)

    Article  Google Scholar 

  40. Zorii, N.: Equilibrium problems for infinite dimensional vector potentials with external fields. Potent. Anal. 38(2), 397–432 (2013)

    Article  MATH  Google Scholar 

  41. Zorii, N.: Harmonic measure, equilibrium measure, and thinness at infinity in the theory of Riesz potentials. Potent. Anal. (2021). https://doi.org/10.1007/s11118-021-09923-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank N.V. Zorii for useful comments on this paper. The research of the first author was supported in part by NSF grant DMS-1936543. The research of the second author was partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades, under grant MTM2015-71352-P, by Spanish Ministerio de Ciencia e Innovación, under grant PID2021-123367NB-100, and by the PFW Scholar-in-Residence program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wielonsky.

Additional information

Communicated by Wolfgang Dahmen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragnev, P.D., Orive, R., Saff, E.B. et al. Riesz Energy Problems with External Fields and Related Theory. Constr Approx 57, 1–43 (2023). https://doi.org/10.1007/s00365-022-09588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-022-09588-z

Keywords

Mathematics Subject Classification

Navigation