Skip to main content
Log in

Bounding Zolotarev Numbers Using Faber Rational Functions

  • Published:
Constructive Approximation Aims and scope

Abstract

By closely following a construction by Ganelius, we use Faber rational functions to derive tight explicit bounds on Zolotarev numbers. We use our results to bound the singular values of matrices, including complex-valued Cauchy matrices and Vandermonde matrices with nodes inside the unit disk. We construct Faber rational functions using doubly connected conformal maps and use their zeros and poles to supply shift parameters in the alternating direction implicit method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The requirement that \(\delta >0\) is a technical necessity as \(R_n(z)\) is defined for \(z\in {\mathbb {C}}{\setminus }F\). Later, we take \(\delta \rightarrow 0\) so conceptually one may prefer to think of \(\eta \) as a parameterization of the boundary of F.

  2. We avoid sampling directly on \(\partial F\) in our applications, and so omit discussion on the numerical computation of principle value integrals.

References

  1. Akhiezer, N.I.: Elements of the Theory of Elliptic Functions, Translations of Mathematical Monographs, vol. 79. AMS, Providence (1990)

    Book  Google Scholar 

  2. Anderson, J.M.: The Faber Operator, Rational Approximation and Interpolation, pp. 1–10. Springer, Berlin (1984)

    Book  Google Scholar 

  3. Bagby, T.: On interpolation by rational functions. Duke Math. J. 36(1), 95–104 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batenkov, D., Diederichs, B., Goldman, G., Yomdin, Y.: The spectral properties of Vandermonde matrices with clustered nodes, arXiv preprint, arXiv:1909.01927

  5. Bazán, F.S.V.: Conditioning of rectangular Vandermonde matrices with nodes in the unit disk. SIAM J. Mat. Anal. Appl. 21(2), 679–693 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beckermann, B., Townsend, A.: On the singular values of matrices with displacement structure. SIAM Rev. 61, 319–344 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harm. Anal. 19, 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courant, R.: Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. Springer, New York (1977)

    Book  MATH  Google Scholar 

  10. Faber, G.: Über polynomische entwickelungen. Math. Ann. 57(3), 389–408 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaier, D.: Lectures on Complex Approximation, vol. 188. Birkhäuser, Boston (1987)

    Book  MATH  Google Scholar 

  12. Ganelius, T.: Rational functions, capacities and approximation. Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study Institute, University, Durham, Durham, 1979, pp. 409–414. Academic Press, London (1980)

  13. Ganelius, T.: Some extremal functions and approximation, Fourier analysis and approximation theory. In: Proceedings of a Colloquium (Budapest), pp. 371–381 (1976)

  14. T. Ganelius, Rational approximation in the complex plane and on the line, Chalmers Tekniska Högskola/Göteborgs Universitet. Dept. Math. (1975)

  15. Gončar, A.A.: Zolotarev problems connected with rational functions. Math. USSR Sbornik 7(4) 623–635 (1969)

  16. Goodman, A.W.: A note on the zeros of Faber polynomials. Proc. Am. Math. Soc. 49, 2 (1975)

    Article  MathSciNet  Google Scholar 

  17. Gopal, A., Trefethen, L.N.: Solving Laplace problems with corner singularities via rational functions. SIAM J. Number. Anal. 57(5), 2074–2094 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Greene, R.E., Krantz, S.G.: Function Theory of One Complex Variable, 3rd edition, Graduate Studies in Mathematics, vol. 40. AMS Providence, Rhode Island (2006)

  19. Güttel, S., Polizzi, E., Tang, P.T.P., Viaud, G.: Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Comput. 37, A2100–A2122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)

    MATH  Google Scholar 

  21. Hu, C.: Algorithm 785: a software package for computing Schwarz–Christoffel conformal transformation for doubly connected polygonal regions. ACM Trans. Math. Soft. 24(3), 317–333 (1998)

    Article  MATH  Google Scholar 

  22. Kövari, T., Pommerenke, C.: On Faber polynomials and Faber expansions. Math. Zeitschr. 99, 193–206 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lebedev, V.I.: On a Zolotarev problem in the method of alternating directions. USSR Comput. Math. Math. Phys. 17(2), 58–76 (1977)

    Article  MATH  Google Scholar 

  24. Moitra, A.: Super-resolution, extremal functions and the condition number of Vandermonde matrices. In: Proceedings of 47th Annual ACM Symposium on Theory of Computing, pp. 821–830 (2015)

  25. Nakatsukasa, Y., Freund, R.W.: Computing fundamental matrix decompositions accurately via the matrix sign function in two iterations: the power of Zolotarev’s functions. SIAM Rev. 58, 461–493 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40(3), A1494–A1522 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Potts, D., Tasche, M.: Parameter estimation for exponential sums by approximate Prony method. Signal Process. 90(5), 1631–1642 (2010)

    Article  MATH  Google Scholar 

  28. Radon, J.: Über Randwertaufgaben beim logarithmischen Potential. Sitzber. Akad. Wiss. Wien 128, 1123–1167 (1919)

    MATH  Google Scholar 

  29. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, New York (2013)

    MATH  Google Scholar 

  30. Schiffer, M.: Some Recent Developments in the Theory of Conformal Mapping, Appendix to R. Dirichlet’s Principle, Conformal Mapping and Minimal Surfaces. Interscience, Courant Dover Publications, Mineola, New York (1950)

  31. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Starke, G.: Near-circularity for the rational Zolotarev problem in the complex plane. J. Approx. Theory 70, 115–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Trefethen, L.N.: Numerical conformal mapping with rational functions. In: Computational Methods and Function Theory (2020) to appear

  34. Walsh, J.L.: Hyperbolic capacity and interpolating rational functions. Duke Math. J. 32(3), 369–379 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zolotarev, E.I.: Application of elliptic functions to questions of functions deviating least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg 30, 1–59 (1877)

    Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the two anonymous referees for their thoughtful suggestions and careful attention to detail.

Funding

This work was partly supported by National Science Foundation Grant No. DMS-1818757, No. DMS-1952757, No. DMS-2045646, and no. DGE-1650441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Townsend.

Additional information

Communicated by Edward B. Saff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Ensuring \({\mathbf {n}}\) is Large Enough for a Valid Bound

Appendix A: Ensuring \({\mathbf {n}}\) is Large Enough for a Valid Bound

For the bound in (1.4) to be effective, n must be taken large enough so that both \(h^n > C_n\), and the lower bound in (4.8) must also be greater than 0, or

$$\begin{aligned} \frac{1-h^{-2n}}{M_n(E,F)} - \frac{M_n(F,E)}{1-h^{-2n}}h^{-n} - \frac{1}{h^n-C_n} \ge 0 \end{aligned}$$
(A.1)

so that the denominator in (1.4) is positive. This latter condition subsumes the first, and so a minimal effective value of n may be given as follows.

Lemma A.1

For any integer \(n>\log (x_1)/\log (h)\), we have that the expression in (4.8) is greater than 0, where \(x_1\) is the largest positive real root of the seventh-degree polynomial

$$\begin{aligned}&x^7 - (4ef+8e+4f+9)x^6 + (8e^2f+4e^2+20ef+12e-4f^2-3)x^5\\&+(8e^3+28e^2+16ef^2+32ef+56e+20f^2+40f+43)x^4\\&+ (16e^2f+20e^2+32ef+40e+8f^3+28f^2+56f+43)x^3\\&+ (-4e^2+8ef^2+20ef+4f^2+12f-3)x^2\\&-(4ef+4e+8f+9)x+1, \end{aligned}$$

where we have abbreviated \(\mathrm{Rot}(E)\) and \(\mathrm{Rot}(F)\) as e and f, respectively.

In the case where E and F are convex, the polynomial above reduces to

$$\begin{aligned} x^7 -25x^6+37x^5+243x^4+243x^3+37x^2-25x+1, \end{aligned}$$
(A.2)

whose rightmost root satisfies \(29.9< x_1 < 29.901\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, D., Townsend, A. & Wilber, H. Bounding Zolotarev Numbers Using Faber Rational Functions. Constr Approx 56, 207–232 (2022). https://doi.org/10.1007/s00365-022-09585-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-022-09585-2

Keywords

Mathematics Subject Classification

Navigation