Skip to main content
Log in

Turán-Type Reverse Markov Inequalities for Polynomials with Restricted Zeros

  • Published:
Constructive Approximation Aims and scope

Abstract

Let \(\mathcal{P}_n^c\) denote the set of all algebraic polynomials of degree at most n with complex coefficients. Let

$$\begin{aligned} D^+ := \{z \in \mathbb {C}: |z| \le 1, \text { Im}(z) \ge 0\}\,. \end{aligned}$$

For integers \(0 \le k \le n\) let \(\mathcal{F}_{n,k}^c\) be the set of all polynomials \(P \in \mathcal{P}_n^c\) having at least \(n-k\) zeros in \(D^+\). Let

$$\begin{aligned} \Vert f\Vert _A := \sup _{z \in A}{|f(z)|} \end{aligned}$$

for complex-valued functions defined on \(A \subset \mathbb {C}\). We prove that there are absolute constants \(c_1 > 0\) and \(c_2 > 0\) such that

$$\begin{aligned} c_1 \left( \frac{n}{k+1}\right) ^{1/2} \le \inf _{P}{\frac{\Vert P^{\prime }\Vert _{[-1,1]}}{\Vert P\Vert _{[-1,1]}}} \le c_2 \left( \frac{n}{k+1}\right) ^{1/2} \end{aligned}$$

for all integers \(0 \le k \le n\), where the infimum is taken for all \(0 \not \equiv P \in \mathcal{F}_{n,k}^c\) having at least one zero in \([-1,1]\). This is an essentially sharp reverse Markov-type inequality for the classes \(\mathcal{F}_{n,k}^c\) extending earlier results of Turán and Komarov from the case \(k=0\) to the cases \(0 \le k \le n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borosh, I., Chui, C.K., Smith, P.W.: On approximation of \(x^N\) by incomplete polynomials. J. Approx. Theory 24, 227–235 (1978)

    Article  MathSciNet  Google Scholar 

  2. Borwein, P.B.: Markov’s inequality for polynomials with real zeros. Proc. Am. Math. Soc. 93, 43–48 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Borwein, P.B., Erdélyi, T.: Markov-Bernstein-type inequalities for classes of polynomials with restricted zeros. Constr. Approx. 10, 411–425 (1994)

    Article  MathSciNet  Google Scholar 

  4. Borwein, P.B., Erdélyi, T.: Polynomials and Polynomial Inequalities. Springer, New York (1995)

    Book  Google Scholar 

  5. Erdélyi, T.: Inequalities for exponential sums via interpolation and Turán-type reverse Markov inequalities. In: Govil, N., et al. (eds.) Frontiers in Interpolation and Approximation Monographs and Textbooks in Pure and Applied Mathematics, vol. 282, pp. 114–119. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  6. Erdélyi, T.: George Lorentz and inequalities in approximation. Algebra i Analiz 21(3), 1–57 (2009). translation in St. Petersburg Math. J., 21 (2010), no. 3, 365–405

    MathSciNet  Google Scholar 

  7. Erdélyi, T.: Reverse Markov- and Bernstein-type inequalities for incomplete polynomials. J. Approx. Theory 251, 105341 (2020)

    Article  MathSciNet  Google Scholar 

  8. Erdélyi, T., Hardin, D., Saff, E.B.: Inverse Bernstein inequalities and min-max-min problems on the unit circle. Mathematika 61(3), 581–590 (2015)

    Article  MathSciNet  Google Scholar 

  9. Erdélyi, T., Nevai, P.: Lower bounds for the derivatives of polynomials and Remez-type inequalities. Trans. Am. Math. Soc. 349, 4953–4972 (1997)

    Article  MathSciNet  Google Scholar 

  10. Erőd, J.: Bizonyos polinomok maximumának alsó korlátjáról. Mat. Fiz. Lapok 46, 58–82 (1939). (in Hungarian)

    Google Scholar 

  11. Erőd, J.: On the lower bound of the maximum of certain polynomials. East J. Approx. 4, 477–501 (2006). (translated from the Hungarian original.)

    MathSciNet  Google Scholar 

  12. Eskenazis, A., Ivanisvili, P.: personal e-mail communications. (2018)

  13. Eskenazis, A., Ivanisvili, P.: Polynomial Inequalities on the Hamming Cube, (2019). arXiv:1902.02406

  14. Glazyrina, PYu., Révész, S.G.: Turán type oscillation inequalities in \(L_q\) norm on the boundary of convex domains. Math. Inequal. Appl. 20(1), 149–180 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Glazyrina, PYu., Révész, S.G.: Turán type converse Markov inequalities in \(L_q\) on a generalized Erőd class of convex domains. J. Approx. Theory 221, 62–76 (2017)

    Article  MathSciNet  Google Scholar 

  16. Govil, N.K.: On the derivative of a polynomial. Proc. Am. Math. Soc. 41, 543–546 (1973)

    Article  Google Scholar 

  17. Govorov, N.V., Lapenko, YuP: Lower bounds for the modulus of the logarithmic derivative of a polynomial. Math. Notes 23, 288–292 (1978)

    Article  MathSciNet  Google Scholar 

  18. Govil, N.K., Mohapatra, R.N.: Markov and Bernstein type inequalities for polynomials. J. Inequal. Appl. 3, 349–387 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Komarov, M.A.: Reverse Markov inequality on the unit interval for polynomials whose zeros lie in the upper unit half-disk. Anal. Math. 45(4), 817–821 (2019)

    Article  MathSciNet  Google Scholar 

  21. Levenberg, N., Poletsky, E.: Reverse Markov inequality. Ann. Acad. Fenn. 27, 173–182 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Lorentz, G.G., von Golitschek, M., Makovoz, Y.: Constructive Approximation, Advanced Problems. Springer, Berlin (1996)

    Book  Google Scholar 

  23. Malik, M.A.: On the derivative of a polynomial. J. London Math. Soc. (2) 1, 57–60 (1969)

    Article  MathSciNet  Google Scholar 

  24. Macintyre, A.J., Fuchs, W.H.J.: Inequalities for the logarithmic derivatives of a polynomial. J. London Math. Soc. 15(2), 162–168 (1940)

    Article  MathSciNet  Google Scholar 

  25. Milovanović, G.V., Mitrinović, D.S., Rassias, ThM: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994)

    Book  Google Scholar 

  26. Mendel, M., Naor, A.: Nonlinear spectral calculus and super-expanders. Publ. Math. Inst. Hautes Études Sci. 119(1), 1–95 (2014)

    Article  MathSciNet  Google Scholar 

  27. Révész, S.G.: On a paper of Erőd and Turán-Markov inequalities for non-flat convex domains. East J. Approx. 12(4), 451–467 (2006)

    MathSciNet  Google Scholar 

  28. Révész, S.G.: Turán type reverse Markov inequalities for compact convex sets. J. Approx. Theory 141(2), 162–173 (2006)

    Article  MathSciNet  Google Scholar 

  29. Révész, S.G.: Turán-Erőd type converse Markov inequalities for convex domains on the plane Complex analysis and applications’13. Bulgarian Acad. Sci. Sofia 13, 252–281 (2013)

    Google Scholar 

  30. Saff, E.B., Varga, R.S.: The sharpness of Lorentz’s theorem on incomplete polynomials. Trans. Am. Math. Soc. 249, 163–186 (1979)

    MathSciNet  MATH  Google Scholar 

  31. Saff, E.B., Varga, R.S.: On incomplete polynomials. II. Pac. J. Math. 92(1), 163–186 (1981)

    MathSciNet  MATH  Google Scholar 

  32. Turán, P.: Über die Ableitung von Polynomen. Compos. Math. 7, 89–95 (1940)

    MATH  Google Scholar 

  33. Xiao, W., Zhou, S.P.: On weighted Turán type inequality. Glas. Math. Ser. III 34(54), 197–202 (1999)

    MATH  Google Scholar 

  34. Zhou, S.P.: Some remarks on Turán’s inequality III: the completion. Anal. Math. 21, 313–318 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Szilárd Révész and Mikhail Anatol’evich Komarov for checking the details of the proofs in the first draft of this paper and for helpful discussions. The author also thanks the anonymous referees for their suggestions to make the paper more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Erdélyi.

Additional information

Communicated by Walter Van Assche.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdélyi, T. Turán-Type Reverse Markov Inequalities for Polynomials with Restricted Zeros. Constr Approx 54, 35–48 (2021). https://doi.org/10.1007/s00365-020-09509-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-020-09509-y

Keywords

Mathematics Subject Classification

Navigation