Skip to main content
Log in

Large Deviation Principles for Hypersingular Riesz Gases

  • Published:
Constructive Approximation Aims and scope

Abstract

We study N-particle systems in \(\mathbb {R}^d\) whose interactions are governed by a hypersingular Riesz potential \(|x-y|^{-s}\), \(s>d\), and subject to an external field. We provide both macroscopic results as well as microscopic results in the limit as \(N\rightarrow \infty \) for random point configurations with respect to the associated Gibbs measure at scaled inverse temperature \(\beta \). We show that a large deviation principle holds with a rate function of the form ‘\(\beta \)-Energy + Entropy’, yielding that the microscopic behavior (on the scale \(N^{-1/d}\)) of such N-point systems is asymptotically determined by the minimizers of this rate function. In contrast to the asymptotic behavior in the integrable case \(s<d\), where on the macroscopic scale N-point empirical measures have limiting density independent of \(\beta \), the limiting density for \(s>d\) is strongly \(\beta \)-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. At an April 2018 ICERM workshop, S. Miller announced that, together with H. Cohn, A. Kumar, D. Radchenko and M. Viazovska, the \(E_8\) and Leech lattices are universally optimal, which together with (3.1) verifies the conjecture for \(d = 8\) and \(d = 24\).

  2. That is, \(\overline{P}_{R, M}\in \overline{{\mathcal {M}}}(\Omega \times \mathcal {X}[K_R]).\)

References

  1. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2(2), 255–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bloom, T., Levenberg, N., Wielonsky, F.: A large deviation principle for weighted Riesz interactions. Constr. Approx. 47(1), 119–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodachov, S.V., Hardin, D.P., Reznikov, A., Saff, E.B.: Optimal discrete measures for Riesz potentials. Trans. Amer. Math. Soc. (2018). https://doi.org/10.1090/tran/7224

    Google Scholar 

  4. Bouchet, F., Gupta, S., Mukamel, D.: Thermodynamics and dynamics of systems with long-range interactions. Phys. A 389(20), 4389–4405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math. 578, 31–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480(3–6), 57–159 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daley, D.J.: An introduction to the theory of point processes. Vol. I. Probability and its Applications. Elementary theory and methods, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  9. Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M.: Dynamics and Thermodynamics of Systems with Long-Range Interactions, volume 602 of Lecture Notes in Physics. Lectures from the conference held in Les Houches. Springer, Berlin (2002)

  10. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, volume 38 of Stochastic Modelling and Applied Probability. Springer, Berlin (2010). (Corrected reprint of the second (1998) edition)

    Book  MATH  Google Scholar 

  11. Föllmer, H., Orey, S.: Large deviations for the empirical field of a Gibbs measure. Ann. Probab. 16(3), 961–977 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Georgii, H.-O.: Large deviations and maximum entropy principle for interacting random fields on. Ann. Probab. 21(4), 1845–1875 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Not. Am. Math. Soc. 51(10), 1186–1194 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Hardin, D.P., Saff, E.B.: Minimal Riesz energy point configurations for rectifiable \(d\)-dimensional manifolds. Adv. Math. 193(1), 174–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hardin, D.P., Saff, E.B., Simanek, B.Z.: Periodic discrete energy for long-range potentials. J. Math. Phys. 55, 123509/27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hardin, D.P., Saff, E.B., Vlasiuk, O.V.: Generating point configurations via hypersingular Riesz energy with an external field. SIAM J. Math. Anal. 49(1), 646–673 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leblé, T.: Logarithmic, Coulomb and Riesz energy of point processes. J. Stat. Phys. 162(4), 887–923 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of log and Riesz gases. Invent. Math. 210(3), 645–757 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leblé, T., Serfaty, S., Zeitouni, O.: Large deviations for the two-dimensional two-component plasma. Commun. Math. Phys. 350(1), 301–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  22. Mazars, M.: Long ranged interactions in computer simulations and for quasi-2d systems. Phys. Rep. 500(2), 43–116 (2011)

    Article  Google Scholar 

  23. Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu 16(3), 501–569 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rassoul-Agha, F., Seppäläinen, T.: A Course on Large Deviations with an Introduction to Gibbs Measures. Graduate Studies in Mathematics, vol. 162. American Mathematical Society, Providence (2015)

    Book  MATH  Google Scholar 

  25. Saff, E.B., Kuijlaars, A.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenchaften, vol. 316. Springer, Berlin (1997)

    Book  Google Scholar 

  27. Serfaty, S.: Coulomb Gases and Ginzburg-Landau Vortices. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Europe (2015)

    MATH  Google Scholar 

  28. Varadhan, S.R.S.: Large Deviations, volume 27 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence (2016)

    Google Scholar 

Download references

Acknowledgements

The authors thank the referee for a careful reading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward B. Saff.

Additional information

Communicated by Peter J. Forrester.

D. P. Hardin and E. B. Saff: The research of these authors was supported, in part, by the U. S. National Science Foundation under the Grant DMS-1516400 and was facilitated by the hospitality and support of the Laboratoire Jacques-Louis Lions at Marie et Pierre Curie Université.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardin, D.P., Leblé, T., Saff, E.B. et al. Large Deviation Principles for Hypersingular Riesz Gases. Constr Approx 48, 61–100 (2018). https://doi.org/10.1007/s00365-018-9431-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-018-9431-9

Keywords

Mathematics Subject Classification

Navigation