Skip to main content
Log in

Bernstein–Walsh Inequalities in Higher Dimensions over Exponential Curves

  • Published:
Constructive Approximation Aims and scope

Abstract

Let \({\mathbf{x}}=(x_1,\dots ,x_d) \in [-1,1]^d\) be linearly independent over \(\mathbb {Z}\), and set \(K=\{(e^{z},e^{x_1 z},e^{x_2 z}\dots ,e^{x_d z}): |z| \le 1\}.\) We prove sharp estimates for the growth of a polynomial of degree n, in terms of

$$\begin{aligned} E_n(\mathbf{x}):=\sup \{\Vert P\Vert _{\Delta ^{d+1}}:P \in \mathcal {P}_n(d+1), \Vert P\Vert _K \le 1\}, \end{aligned}$$

where \(\Delta ^{d+1}\) is the unit polydisk. For all \({\mathbf{x}} \in [-1,1]^d\) with linearly independent entries, we have the lower estimate

$$\begin{aligned} \log E_n(\mathbf{x})\ge \frac{n^{d+1}}{(d-1)!(d+1)} \log n - O(n^{d+1}); \end{aligned}$$

for Diophantine \(\mathbf{x}\), we have

$$\begin{aligned} \log E_n(\mathbf{x})\le \frac{ n^{d+1}}{(d-1)!(d+1)}\log n+O( n^{d+1}). \end{aligned}$$

In particular, this estimate holds for almost all \(\mathbf{x}\) with respect to Lebesgue measure. The results here generalize those of Coman and Poletsky [6] for \(d=1\) without relying on estimates for best approximants of rational numbers which do not hold in the vector-valued setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bos, L., Brudnyi, A., Levenberg, N., Totik, V.: Tangential Markov inequalities on transcendental curves. Constr. Approx. 19, 339–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bos, L.P., Brudnyi, A., Levenberg, N.: On polynomial inequalities on exponential curves in \({\mathbb{C}}^n\). Constr. Approx. 31(1), 139–147 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bovey, J.D., Dodson, M.M.: The Hausdorff dimension of systems of linear forms. Acta Arith. 45, 337–358 (1986)

    MATH  MathSciNet  Google Scholar 

  4. Coman, D., Poletsky, E.A.: Measures of transcendency for entire functions. Mich. Math. J. 51, 575–591 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coman, D., Poletsky, E.A.: Bernstein–Walsh inequalities and the exponential curve in \({\mathbb{C}}^2\). Proc. Am. Math. Soc. 131, 879–887 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coman, D., Poletsky, E.: Polynomial estimates, exponential curves and Diophantine approximation. Math. Res. Lett. 17(6), 1125–1136 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dodson, M.M.: Geometric and probabilistic ideas in metric Diophantine approximation. Russ. Math. Surv. 48, 73–102 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dodson, M.M., Rynne, B.P., Vickers, J.A.G.: Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37, 59–73 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Schmidt, W.M.: Diophantine approximation. Lecture Notes in Mathematics, vol. 785. Springer, Berlin (1980)

Download references

Acknowledgments

The authors are grateful to Dan Coman for useful comments on the preliminary version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirali Kadyrov.

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadyrov, S., Lawrence, M. Bernstein–Walsh Inequalities in Higher Dimensions over Exponential Curves. Constr Approx 44, 327–338 (2016). https://doi.org/10.1007/s00365-015-9314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-015-9314-2

Keywords

Mathematics Subject Classification

Navigation