Skip to main content
Log in

An Explicit Formula for the Coefficients in Laplace’s Method

  • Published:
Constructive Approximation Aims and scope

Abstract

Laplace’s method is one of the fundamental techniques in the asymptotic approximation of integrals. The coefficients appearing in the resulting asymptotic expansion arise as the coefficients of a convergent or asymptotic series of a function defined in an implicit form. Due to the tedious computation of these coefficients, most standard textbooks on asymptotic approximations of integrals do not give explicit formulas for them. Nevertheless, we can find some more or less explicit representations for the coefficients in the literature: Perron’s formula gives them in terms of derivatives of an explicit function; Campbell, Fröman and Walles simplified Perron’s method by computing these derivatives using an explicit recurrence relation. The most recent contribution is due to Wojdylo, who rediscovered the Campbell, Fröman and Walles formula and rewrote it in terms of partial ordinary Bell polynomials. In this paper, we provide an alternative representation for the coefficients that contains ordinary potential polynomials. The proof is based on Perron’s formula and a theorem of Comtet. The asymptotic expansions of the gamma function and the incomplete gamma function are given as illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brassesco, S., Méndez, M.A.: The asymptotic expansion for n! and the Lagrange inversion formula. Ramanujan J. 24, 219–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Campbell, J.A., Fröman, P.O., Walles, E.: Explicit series formulae for the evaluation of integrals by the method of steepest descent. Stud. Appl. Math. 77, 151–172 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Comtet, L.: Advanced Combinatorics. Reidel, Dordrecht (1974)

    Book  MATH  Google Scholar 

  4. De Angelis, V.: Asymptotic expansions and positivity of coefficients for large powers of analytic functions. Int. J. Math. Math. Sci. 2003, 1003–1025 (2003)

    Article  MATH  Google Scholar 

  5. Dunster, T.M., Paris, R.B., Cang, S.: On the high-order coefficients in the uniform asymptotic expansion for the incomplete gamma function. Methods Appl. Anal. 5, 223–247 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Erdélyi, A.: Asymptotic Expansions. Dover, New York (1956)

    MATH  Google Scholar 

  7. López, J.L., Pagola, P., Pérez Sinusía, E.: A simplification of Laplace’s method: applications to the Gamma function and Gauss hypergeometric function. J. Approx. Theory 161, 280–291 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. López, J.L., Pagola, P.: An explicit formula for the coefficients of the saddle point method. Constr. Approx. 33, 145–162 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nemes, G.: On the coefficients of the asymptotic expansion of n!. J. Integer Seq. 13, 10.6.6 (2010)

    MathSciNet  Google Scholar 

  10. Olver, F.W.J.: Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5, 19–29 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974). Reprinted, A.K. Peters, Wellesley (1997)

    Google Scholar 

  12. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  13. Paris, R.B., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  14. Paris, R.B.: Hadamard Expansions and Hyperasymptotic Evaluation: An Extension of the Method of Steepest Descents. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  15. Perron, O.: Über die näherungsweise Berechnung von Funktionen großer Zahlen. Sitzungsber. Bayr. Akad. Wissensch. (Münch. Ber.), 191–219 (1917)

  16. Riordan, J.: Combinatorial Identities. Wiley, New York (1979)

    Google Scholar 

  17. Temme, N.M.: Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function. Math. Comput. 29, 1109–1114 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Temme, N.M.: The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10, 757–766 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wojdylo, J.: On the coefficients that arise from Laplace’s method. J. Comput. Appl. Math. 196, 241–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wojdylo, J.: Computing the coefficients in Laplace’s method. SIAM Rev. 48, 76–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wong, R.: Asymptotic Approximations of Integrals. Academic Press, New York (1989). Reprinted, Classics Appl. Math., vol. 34. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the two anonymous referees for their thorough, constructive and helpful comments and suggestions on an earlier version of this paper. Especially, he wishes to thank the second referee, for bringing the relevance of Comtet’s work to his attention and giving suggestions for future research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergő Nemes.

Additional information

Communicated by Erik Koelink.

Appendix:  Powers of Power Series

Appendix:  Powers of Power Series

Let \(F ( x ) = 1 + \sum_{n = 1}^{\infty}{f_{n} x^{n} }\) be a formal power series. For any nonnegative integer k, we define the partial ordinary Bell polynomials B n,k (f 1,f 2,…,f nk+1) (associated with F) by the generating function

$$\bigl( {F ( x ) - 1} \bigr)^k = \Biggl( {\sum _{n = 1}^\infty {f_n x^n } } \Biggr)^k = \sum _{n = k}^\infty {\mathsf {B}_{n,k} ( {f_1 ,f_2 , \ldots,f_{n - k + 1} } )x^n }, $$

so that B 0,0=1, B n,0=0 (n≥1), B n,1=f n , and \(\mathsf{B}_{n,2} = \sum\nolimits_{j = 1}^{n-1} {f_{j} f_{n - j} }\). From the simple identity, (F(x)−1)k+1=(F(x)−1)(F(x)−1)k, we obtain the recurrence relation

$$ \mathsf{B}_{n,k + 1} ( {f_1 ,f_2 , \ldots,f_{n - k} } ) = \sum _{j = 1}^{n - k} {f_j \mathsf{B}_{n - j,k} ( {f_1 ,f_2 , \ldots,f_{n - j - k + 1} } )} . $$
(A.1)

An explicit representation, that follows from the definition, is given by

$$\mathsf{B}_{n,k} ( {f_1 ,f_2 , \ldots,f_{n - k + 1} } ) = \sum{\frac{{k!}}{{k_1 !k_2 ! \cdots k_{n - k + 1} !}}f_1^{k_1 } f_2^{k_2 } \cdots f_{n - k + 1}^{k_{n - k + 1} } }, $$

where the sum runs over all sequences k 1,k 2,…,k n of nonnegative integers such that k 1+2k 2+⋯+(nk+1)k nk+1=n and k 1+k 2+⋯+k nk+1=k.

For any complex number ρ, we define the ordinary potential polynomials A ρ,n (f 1,f 2,…,f n ) (associated with F) by the generating function

$$\bigl( {F ( x )} \bigr)^\rho = \Biggl( {1 + \sum _{n = 1}^\infty {f_n x^n } } \Biggr)^\rho = \sum _{n = 0}^\infty {\mathsf{A}_{\rho,n} ( {f_1 ,f_2 , \ldots,f_n } )x^n }, $$

hence,

$$\mathsf{A}_{\rho,n} ( {f_1 ,f_2 , \ldots,f_n } ) = \sum _{k = 0}^n { \binom{\rho}{k} \mathsf{B}_{n,k} ( {f_1 ,f_2 , \ldots,f_{n - k + 1} } )}. $$

The first few are A ρ,0=1, A ρ,1=ρf 1, \(\mathsf{A}_{\rho,2} = \rho f_{2} + \binom{\rho}{2}f_{1}^{2}\), and, in general,

$$\mathsf{A}_{\rho,n} ( {f_1 ,f_2 , \ldots,f_n } ) = \sum {\binom{\rho}{k} \frac{{k!}}{{k_1 !k_2 ! \cdots k_n !}}f_1^{k_1 } f_2^{k_2 } \cdots f_n^{k_n } } , $$

where the sum extends over all sequences k 1,k 2,…,k n of nonnegative integers such that k 1+2k 2+⋯+nk n =n and k 1+k 2+⋯+k n =k. Since (F(x))ρ=(F(x))ρ−1 F(x), we have the recurrence

$$ \mathsf{A}_{\rho,n} ( {f_1 ,f_2 , \ldots,f_n } ) = \mathsf {A}_{\rho - 1,n} ( {f_1 ,f_2 , \ldots,f_n } ) + \sum _{k = 1}^n {f_k \mathsf{A}_{\rho - 1,n - k} ( {f_1 ,f_2 , \ldots ,f_{n - k} } )} . $$
(A.2)

In general, if \(G ( x ) = \sum\nolimits_{n = 0}^{\infty}{g_{n} x^{n} }\) is a formal power series, then by definition, we have

$$G \bigl( {y \bigl( {F ( x ) - 1} \bigr)} \bigr) = \sum _{n = 0}^\infty { \Biggl( {\sum _{k = 0}^n {g_k \mathsf{B}_{n,k} ( {f_1 ,f_2 , \ldots,f_{n - k + 1} } )y^k } } \Biggr)x^n } . $$

Specially,

$$\exp \Biggl( {y\sum _{n = 1}^\infty {f_n x^n } } \Biggr) = \sum _{n = 0}^\infty { \Biggl( {\sum _{k = 0}^n {\frac{{\mathsf {B}_{n,k} ( {f_1 ,f_2 , \ldots,f_{n - k + 1} } )}}{{k!}}y^k } } \Biggr)x^n } . $$

For more details see, e.g., Comtet’s book [3, pp. 133–153].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemes, G. An Explicit Formula for the Coefficients in Laplace’s Method. Constr Approx 38, 471–487 (2013). https://doi.org/10.1007/s00365-013-9202-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-013-9202-6

Keywords

Mathematics Subject Classification (2010)

Navigation