Skip to main content
Log in

Bandlimited Approximations to the Truncated Gaussian and Applications

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper, we extend the theory of optimal approximations of functions f:ℝ→ℝ in the L 1(ℝ)-metric by entire functions of prescribed exponential type (bandlimited functions). We solve this problem for the truncated and the odd Gaussians using explicit integral representations and properties of truncated theta functions obtained via the maximum principle for the heat operator. As applications, we recover most of the previously known examples in the literature and further extend the class of truncated and odd functions for which this extremal problem can be solved, by integration on the free parameter and the use of tempered distribution arguments. This is the counterpart of the work (Carneiro et al. in Trans. Am. Math. Soc., 2012), where the case of even functions is treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barton, J.T., Montgomery, H.L., Vaaler, J.D.: Note on a Diophantine inequality in several variables. Proc. Am. Math. Soc. 129, 337–345 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carneiro, E.: Sharp approximations to the Bernoulli periodic functions by trigonometric polynomials. J. Approx. Theory 154, 90–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carneiro, E., Chandee, V.: Bounding ζ(s) in the critical strip. J. Number Theory 131, 363–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, II. Trans. Am. Math. Soc. 362, 5803–5843 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, III. Constr. Approx. 31(2), 259–288 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carneiro, E., Chandee, V., Milinovich, M.: Bounding S(t) and S 1(t) on the Riemann hypothesis. Math. Ann. (2012). doi:10.1007/s00208-012-0876-z

    Google Scholar 

  7. Carneiro, E., Littmann, F., Vaaler, J.D.: Gaussian subordination for the Beurling–Selberg extremal problem. Trans. Am. Math. Soc. (2012, to appear)

  8. Chandee, V., Soundararajan, K.: Bounding |ζ(1/2+it)| on the Riemann hypothesis. Bull. Lond. Math. Soc. 43, 243–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chandrasekharan, K.: Elliptic Functions. Springer, Berlin (1985)

    MATH  Google Scholar 

  10. Ganzburg, M.I.: Criteria for best approximation of locally integrable functions in L(ℝ). In: Current Problems of Summation and Approximation of Functions and Their Applications, pp. 11–16. Dnepropetrovsk Gos. University, Dnepropetrovsk (1983) (Russian)

    Google Scholar 

  11. Ganzburg, M.I.: Limit theorems and best constants in approximation theory. In: Handbook of Analytic-Computational Methods in Applied Mathematics, pp. 507–569. Chapman & Hall/CRC, Boca Raton (2000)

    Google Scholar 

  12. Ganzburg, M.I.: L-approximation to non-periodic functions. J. Concr. Appl. Math. 8(2), 208–215 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Ganzburg, M.I., Lubinsky, D.S.: Best approximating entire functions to |x|α in L 2. In: Complex Analysis and Dynamical Systems III. Contemp. Math., vol. 455, pp. 93–107. Am. Math. Soc., Providence (2008)

    Chapter  Google Scholar 

  14. Goldston, D.A., Gonek, S.M.: A note on S(t) and the zeros of the Riemann zeta-function. Bull. Lond. Math. Soc. 39, 482–486 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graham, S.W., Vaaler, J.D.: A class of extremal functions for the Fourier transform. Trans. Am. Math. Soc. 265, 283–382 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holt, J., Vaaler, J.D.: The Beurling–Selberg extremal functions for a ball in the Euclidean space. Duke Math. J. 83, 203–247 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hörmander, L.: The Analysis of Linear Partial Differential Operators I, 2nd edn. Springer, New York (1990)

    Book  MATH  Google Scholar 

  18. Krein, M.G.: On the best approximation of continuous differentiable functions on the whole real axis. Dokl. Akad. Nauk SSSR 18, 615–624 (1938) (Russian)

    Google Scholar 

  19. Li, X.J., Vaaler, J.D.: Some trigonometric extremal functions and the Erdös–Turán type inequalities. Indiana Univ. Math. J. 48(1), 183–236 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Littmann, F.: Entire approximations to the truncated powers. Constr. Approx. 22(2), 273–295 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Littmann, F.: One-sided approximation by entire functions. J. Approx. Theory 141(1), 1–7 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Littmann, F.: Entire majorants via Euler–Maclaurin summation. Trans. Am. Math. Soc. 358(7), 2821–2836 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Littmann, F.: Zeros of Bernoulli-type functions and best approximations. J. Approx. Theory 161(1), 213–225 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Montgomery, H.L.: The analytic principle of the large sieve. Bull. Am. Math. Soc. 84(4), 547–567 (1978)

    Article  MATH  Google Scholar 

  25. Montgomery, H.L., Vaughan, R.C.: Hilbert’s inequality. J. Lond. Math. Soc. (2) 8, 73–81 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967)

    Google Scholar 

  27. Selberg, A.: Lectures on sieves. In: Atle Selberg: Collected Papers, Vol. II, pp. 65–247. Springer, Berlin (1991)

    Google Scholar 

  28. Shapiro, H.S.: Topics in Approximation Theory. Lecture Notes in Mathematics, vol. 187. Springer, Berlin (1971)

    MATH  Google Scholar 

  29. Sz.-Nagy, B.: Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen II. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 91 (1939)

  30. Vaaler, J.D.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc. 12, 183–215 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  32. Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Marian Bocea for helpful discussions regarding the maximum principle of the heat operator and to Jeffrey D. Vaaler for the discussions on the extremal problem. E. Carneiro acknowledges support from the Institute for Advanced Study via the National Science Foundation agreement No. DMS-0635607 and support from the CNPq-Brazil grants 473152/2011-8 and 302809/2011-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Littmann.

Additional information

Communicated by Doron S. Lubinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carneiro, E., Littmann, F. Bandlimited Approximations to the Truncated Gaussian and Applications. Constr Approx 38, 19–57 (2013). https://doi.org/10.1007/s00365-012-9177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-012-9177-8

Keywords

Mathematics Subject Classification (2000)

Navigation