Skip to main content
Log in

New closed-form efficient estimators for the negative binomial distribution

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The negative binomial (NB) distribution is of interest in various application studies. New closed-form efficient estimators are proposed for the two NB parameters, based on closed-form \(\sqrt{n}\)-consistent estimators. The asymptotic efficiency and normality of the new closed-form efficient estimators are guaranteed by the theorem applied to derive the new estimators. Since the new closed-form efficient estimators have the same asymptotic distribution as the maximum likelihood estimators (MLEs), these are denoted as MLE-CEs. Simulation studies suggest that the MLE-CE of dispersion parameter r performs better than its MLE and the method of moments estimator (MME) for some parameter ranges. The MLE-CE of the probability parameter p exhibits the best performance for relatively large p values, where the positive-definite expected Fisher information matrix exists. MLE performs better than MME in this parameter space. The MLE-CE is over 200 times faster than the MLE, especially for large sample sizes, which is good for the big data era. Considering the estimated accuracy and computing time, MLE-CE is recommended for small r values and large p values, whereas MME is recommended for other conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamidis K (1999) An EM algorithm for estimating negative binomial parameters. Aust N Z J Stat 41(2):213–221

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Khasawneh MF (2010) Estimating the negative binomial dispersion parameter. Asian J Math Stat 3(1):1–15

    Article  MathSciNet  Google Scholar 

  • Anscombe FJ (1949) The statistical analysis of insect counts based on the negative binomial distribution. Biometrics 5:165–173

    Article  Google Scholar 

  • Best DJ, Gipps PG (1974) An improved gamma approximation to the negative binomial. Technometrics 16:621–624

    Article  MathSciNet  MATH  Google Scholar 

  • Clark SJ, Perry JN (1989) Estimation of the negative binomial parameter \(k\) by maximum quasi-likelihood. Biometrics 45:309–316

    Article  MATH  Google Scholar 

  • Ehrenberg A (1988) Repeat-buying: facts, theory and applications. Oxford University Press, New York

    Google Scholar 

  • Essa M, Sayed T (2018) Traffic conflict models to evaluate the safety of signalized intersections at the cycle level. Transp Res Part C 89:289–302

    Article  Google Scholar 

  • Fisher RA (1941) The negative binomial distribution. Ann Eugen 11:182–187

    Article  MathSciNet  MATH  Google Scholar 

  • Grandell J (1997) Mixed Poisson processes. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Haldane JBS (1941) The fitting of binomial distributions. Ann Eugen 11:179–181

    Article  MathSciNet  MATH  Google Scholar 

  • Lawless JF (1987) Negative binomial and mixed Poisson regression. Can J Stat 15:209–225

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann EL, Casella G (2006) Theory of point estimation, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Lundberg O (1964) On random processes and their application to sickness and accident statistics. Almquist and Wiksells, Uppsala

    MATH  Google Scholar 

  • Robertson B, Fung T, Weber N (2013) An alternative estimator for the shape parameter in the negative binomial distribution. Math Sci 38:34–42

    MathSciNet  MATH  Google Scholar 

  • Ross GJS, Preece DA (1985) The negative binomial distribution. J R Stat Soc Ser D (Stat) 34(3):323–335

    Google Scholar 

  • Savani V, Zhigljavsky AA (2006) Efficient estimation of parameters of the negative binomial distribution. Commun Stat Theory Methods 35(5):767–783

    Article  MathSciNet  MATH  Google Scholar 

  • Srivastava HM, Choi J (2012) Zeta and q-Zeta functions and associated series and integrals. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Yee T, Moler C (2019) VGAM: vector generalized linear and additive models, R package version 1.1-2. https://www.stat.auck.land.ac.nz/yee/VGAM

  • Zhang Y, Ye Z, Lord D (2007) Estimating dispersion parameter of negative binomial distribution for analysis of crash data: bootstrapped maximum likelihood method. Transp Res Rec 2019(1):15–21

    Article  Google Scholar 

  • Zhang X, Liu P, Chen Y, Bai L, Wang W (2014) Modeling the frequency of opposing left-turn conflicts at signalized intersections using generalized linear regression models. Traffic Inj Prev 15(6):645–651

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author’s research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07045603), and a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A4A5032622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung-Moon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 99 KB)

Appendices

Appendix A

The assumptions for Theorem 1:

(A1):

The distributions of the observations are distinct;

(A2):

The distributions have common support;

(A3):

The observations are \(\textbf{X}=\left( X_1,\ldots , X_n\right) \), where the \(X_i\)s are i.i.d. with probability density or probability mass \(f(x|{\varvec{\theta }})\) which is assumed to be continuous or discrete at x;

(A4):

There exists an open subset \(\omega \) of \(\Omega \) containing the true parameter point \({\varvec{\theta }}^0\) such that for almost all x, the density \(f(x|{\varvec{\theta }})\) admits all third derivatives \({\partial ^3\over \partial \theta _j \partial \theta _k\partial \theta _l}f(x|{\varvec{\theta }})\) for all \({\varvec{\theta }}\) in \(\omega \);

(A5):

The first and second logarithmic derivatives of f satisfy the equations

$$\begin{aligned} E_{\varvec{\theta }}\left[ {\partial \over \partial \theta _j} \log f( X |{\varvec{\theta }})\right] =0\text { for }j=1,\ldots ,s, \end{aligned}$$

and

$$\begin{aligned} {\mathcal {I}}_{jk}({\varvec{\theta }})= & {} E_{\varvec{\theta }} \left[ {\partial \over \partial \theta _j}\log f( X |{\varvec{\theta }}) \cdot {\partial \over \partial \theta _k}\log f( X |{\varvec{\theta }})\right] \\= & {} E_{\varvec{\theta }}\left[ -{\partial ^2\over \partial \theta _j\partial \theta _k} \log f( X |{\varvec{\theta }})\right] ; \end{aligned}$$
(A6):

Assume that the \({\mathcal {I}}_{jk}({\varvec{\theta }})\) are finite and that the matrix \({\mathcal {I}}\) is positive definite for all \({\varvec{\theta }}\) in \(\omega \), and hence that the score statistics \({\partial \over \partial \theta _j}\log f(x|{\varvec{\theta }})\) for \(j=1,\ldots ,s\), are affinely independent with probability 1;

(A7):

Suppose that there exist functions \(M_{jkl}(x)\) such that

$$\begin{aligned} \left| {\partial ^3\over \partial \theta _j\partial \theta _k\partial \theta _l} f(x|{\varvec{\theta }})\right| \le M_{jkl}(x) \text { for all } {\varvec{\theta }}\in \omega , \end{aligned}$$

where \(m_{jkl}(x)=E_{{\varvec{\theta }}^0}\left[ M_{jkl}(X) \right] <\infty \) for all jkl.

Appendix B

Elements of the new closed-form efficient estimators of parameters \({\varvec{\theta }}_*=(r,\mu )\) in the Sect. 4:

$$\begin{aligned} l_{*1}'= & {} {\partial l(\varvec{\theta }_*)\over \partial r}=\sum \limits _{i=1}^n\varphi (x_i+r)-n\varphi (r)-{1\over \mu +r}\sum \limits _{i=1}^nx_i+n\log {r\over \mu +r}+ {n\mu \over \mu +r},\\ l_{*2}'= & {} {\partial l(\varvec{\theta }_*)\over \partial \mu }=\left( {1\over \mu }-{1\over \mu +r}\right) \sum \limits _{i=1}^nx_i-{nr\over \mu +r},\\ l_{*11}''= & {} {\partial ^2 l(\varvec{\theta }_*)\over \partial r^2}=\sum \limits _{i=1}^n\varphi _1(x_i+r)-n\varphi _1(r)+{1\over (\mu +r)^2}\left( \sum \limits _{i=1}^nx_i-n\mu \right) +{n\over r}-{n\over \mu +r}, \\ l_{*12}''= & {} {\partial ^2 l(\varvec{\theta }_*)\over \partial r\partial \mu }=l_{*21}''={\partial ^2 l(\varvec{\theta }_*)\over \partial \mu \partial r}={1\over (\mu +r)^2}\left( \sum \limits _{i=1}^nx_i-n\mu \right) ,\\ l_{*22}''= & {} {\partial ^2 l(\varvec{\theta }_*)\over \partial \mu ^2}=\left( -{1\over \mu ^2}+{1\over (\mu +r)^2}\right) \sum \limits _{i=1}^nx_i+{nr\over (\mu +r)^2}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Kim, HM. New closed-form efficient estimators for the negative binomial distribution. Stat Papers 64, 2119–2135 (2023). https://doi.org/10.1007/s00362-022-01373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01373-1

Keywords

Navigation