Skip to main content
Log in

Parametric estimation of hidden Markov models by least squares type estimation and deconvolution

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper develops a simple and computationally efficient parametric approach to the estimation of general hidden Markov models (HMMs). For non-Gaussian HMMs, the computation of the maximum likelihood estimator (MLE) involves a high-dimensional integral that has no analytical solution and can be difficult to approach accurately. We develop a new alternative method based on the theory of estimating functions and a deconvolution strategy. Our procedure requires the same assumptions as the MLE and deconvolution estimators. We provide theoretical guarantees about the performance of the resulting estimator; its consistency and asymptotic normality are established. This leads to the construction of confidence intervals. Monte Carlo experiments are investigated and compared with the MLE. Finally, we illustrate our approach using real data for ex-ante interest rate forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We refer the reader to Doukhan (1994) for the proof that if \((X_i)_i\) is an ergodic process then the process \((Y_i)_i\), which is the sum of an ergodic process with an i.i.d. noise, is again stationary ergodic. Moreover, by the definition of an ergodic process, if \((Y_i)_i\) is an ergodic process then the couple \(\mathbf {Y}_i=(Y_i, Y_{i+1})\) inherits the property (see Genon-Catalot et al. (2000)).

  2. We argue that our approach can be applied when we introduce a long mean parameter \(\mu \) in the volatility process.

References

  • Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J R Stat Soc B 72(3):269–342

    Article  MathSciNet  Google Scholar 

  • Bos CS, Shephard N (2006) Inference for adaptive time series models: stochastic volatility and conditionally gaussian state space form. Econom Rev 25(2–3):219–244

    Article  MathSciNet  Google Scholar 

  • Brunel E, Comte F, Lacour C (2007) Adaptive estimation of the conditional density in the presence of censoring. Sankhyā 69:734–763

    MathSciNet  MATH  Google Scholar 

  • Burmeister E, Wall KD (1982) Kalman filtering estimation of unobserved rational expectations with an application to the german hyperinflation. J Econom 20(2):255–284

    Article  MathSciNet  Google Scholar 

  • Burmeister E, Wall KD, Hamilton JD (1986) Estimation of unobserved expected monthly inflation using kalman filtering. J Bus Econ Stat 4(2):147–160

    Google Scholar 

  • Butucea C, Matias C (2005) Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model. Bernoulli 11(2):309–340

    Article  MathSciNet  Google Scholar 

  • Chan JC (2017) The stochastic volatility in mean model with time-varying parameters: an application to inflation modeling. J Bus Econ Stat 35(1):17–28

    Article  MathSciNet  Google Scholar 

  • Chanda KC (1995) Large sample analysis of autoregressive moving-average models with errors in variables. J Time Ser Anal 16(1):1–15

    Article  MathSciNet  Google Scholar 

  • Chopin N, Jacob PE, Papaspiliopoulos O (2013) Smc2: an efficient algorithm for sequential analysis of state space models. J R Stat Soc B 75(3):397–426

    Article  MathSciNet  Google Scholar 

  • Comte F, Taupin M-L (2001) Semiparametric estimation in the (auto)-regressive \(\beta \)-mixing model with errors-in-variables. Math Methods Stat 10(2):121–160

    MathSciNet  MATH  Google Scholar 

  • Costa M, Alpuim T (2010) Parameter estimation of state space models for univariate observations. J Stat Plann Inference 140(7):1889–1902

    Article  MathSciNet  Google Scholar 

  • Dedecker J, Samson A, Taupin M-L (2014) Estimation in autoregressive model with measurement error. ESAIM Prob Stat 18:277–307

    Article  MathSciNet  Google Scholar 

  • Delaigle A, Hall P (2016) Methodology for non-parametric deconvolution when the error distribution is unknown. J R Stat Soc B 231–252

  • Delyon B, Lavielle M, Moulines E (1999) Convergence of a stochastic approximation version of the em algorithm. Ann Stat 94–128

  • Douc R, Moulines E, Olsson J, van Handel R (2011) Consistency of the maximum likelihood estimator for general hidden Markov models. Ann Stat 39(1):474–513

    Article  MathSciNet  Google Scholar 

  • Doucet A, De Freitas N, Gordon N (2001) An introduction to sequential monte carlo methods. In: Sequential Monte Carlo methods in practice, pp 3–14. Springer

  • Doukhan P (1994) Mixing. Properties and examples, volume 85 of Lecture notes in statistics. Springer, New York

  • Ebner B, Klar B, Meintanis SG (2018) Fourier inference for stochastic volatility models with heavy-tailed innovations. Stat Pap 59(3):1043–1060

    Article  MathSciNet  Google Scholar 

  • Efromovich S (1997) Density estimation for the case of supersmooth measurement error. J Am Stat Assoc 92(438):526–535

    Article  MathSciNet  Google Scholar 

  • El Kolei S (2013) Parametric estimation of hidden stochastic model by contrast minimization and deconvolution. Metrika 76(8):1031–1081

    Article  MathSciNet  Google Scholar 

  • El Kolei S, Patras F (2018) Analysis, detection and correction of misspecified discrete time state space models. J Comput Appl Math 333:200–214

    Article  MathSciNet  Google Scholar 

  • El Kolei S, Pelgrin F (2017) Parametric inference of autoregressive heteroscedastic models with errors in variables. Stat Probab Lett 130:63–70

    Article  MathSciNet  Google Scholar 

  • Fan J, Truong YK, Wang Y (1991) Nonparametric function estimation involving errors-in-variables. In: Nonparametric functional estimation and related topics, pp 613–627. Springer

  • Fan G-L, Liang H-Y, Wang J-F (2013) Empirical likelihood for heteroscedastic partially linear errors-in-variables model with \(\alpha \)-mixing errors. Stat Pap 54(1):85–112

    Article  MathSciNet  Google Scholar 

  • Genon-Catalot V, Jeantheau T, Larédo C (2000) Stochastic volatility models as hidden Markov models and statistical applications. Bernoulli 6(6):1051–1079

    Article  MathSciNet  Google Scholar 

  • Ghysels E, Harvey AC, Renault E (1996) Stochastic volatility. Handb Stat 14:119–191

    Article  MathSciNet  Google Scholar 

  • Hamilton JD (1994a) State-space models. Handb Econ 4:3039–3080

  • Hamilton JD (1994b) Time series analysis, vol 2. Princeton University Press, Princeton

  • Hannan EJ, Rissanen J (1982) Recursive estimation of mixed autoregressive-moving average order. Biometrika 69(1):81–94

    Article  MathSciNet  Google Scholar 

  • Hayashi F (2000) Econometrics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Holston K, Laubach T, Williams JC (2017) Measuring the natural rate of interest: international trends and determinants. J Int Econ 108:S59–S75

    Article  Google Scholar 

  • Jones GL (2004) On the Markov chain central limit theorem. Probab Surv 1:299–320

    Article  MathSciNet  Google Scholar 

  • Kappus J, Mabon G (2014) Adaptive density estimation in deconvolution problems with unknown error distribution. Electron J Stat 8(2):2879–2904

    Article  MathSciNet  Google Scholar 

  • Lacour C (2007) Adaptive estimation of the transition density of a markov chain. Annales de l’IHP Probabilités et statistiques 43:571–597

    MathSciNet  MATH  Google Scholar 

  • Lacour C (2008a) Adaptive estimation of the transition density of a particular hidden markov chain. J Multivar Anal 99(5):787–814

  • Lacour C (2008b) Least squares type estimation of the transition density of a particular hidden Markov chain. Electron J Stat 2:1–39

  • Lacour C (2008c) Nonparametric estimation of the stationary density and the transition density of a markov chain. Stoch Process Appl 118(2):232–260

  • Laubach T, Williams JC (2003) Measuring the natural rate of interest. Rev Econ Stat 85(4):1063–1070

    Article  Google Scholar 

  • Lilliefors HW (1967) On the kolmogorov-smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402

    Article  Google Scholar 

  • Lindsten F (2013) An efficient stochastic approximation EM algorithm using conditional particle filters. In: 2013 IEEE international conference on acoustics, speech and signal processing, pp 6274–6278. IEEE

  • Meister A (2004) On the effect of misspecifying the error density in a deconvolution problem. Can J Stat 32(4):439–449

    Article  MathSciNet  Google Scholar 

  • Miao Y, Zhao F, Wang K, Chen Y (2013) Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors. Stat Pap 54(1):193–206

    Article  MathSciNet  Google Scholar 

  • Mokkadem A et al (1987) Sur un modèle autorégressif non linéaire, ergodicité et ergodicité géométrique. J Time Ser Anal 8(2):195–204

    Article  MathSciNet  Google Scholar 

  • Neumann MH, Hössjer O (1997) On the effect of estimating the error density in nonparametric deconvolution. J Nonparametric Stat 7(4):307–330

    Article  MathSciNet  Google Scholar 

  • Newey WK, McFadden D (1994a) Large sample estimation and hypothesis testing. In: Handbook of econometrics, Vol. IV, volume 2 of Handbooks in econom., pp 2111–2245. North-Holland, Amsterdam

  • Newey WK, McFadden D (1994b) Large sample estimation and hypothesis testing. Handb Econ 4:2111–2245

  • Olsson J, Rydén T (2007) Particle filter-based approximate maximum likelihood inference asymptotics in state-space models. In: Conference Oxford sur les méthodes de Monte Carlo séquentielles, volume 19 of ESAIM Proc., pp 115–120. EDP Sci., Les Ulis

  • Omori Y, Chib S, Shephard N, Nakajima J (2007) Stochastic volatility with leverage: fast and efficient likelihood inference. J Econom 140(2):425–449

    Article  MathSciNet  Google Scholar 

  • Pivetta F, Reis R (2007) The persistence of inflation in the united states. J Econ Dyn Control 31(4):1326–1358

    Article  Google Scholar 

  • Staudenmayer J, Buonaccorsi JP (2005) Measurement error in linear autoregressive models. J Am Stat Assoc 100(471):841–852

    Article  MathSciNet  Google Scholar 

  • Stock JH, Watson MW (2007) Why has us inflation become harder to forecast? J Money Credit Bank 39:3–33

    Article  Google Scholar 

  • Taylor S (2005) Financial returns modelled by the product of two stochastic processes, a study of daily sugar prices, vol 1. Oxford University Press, Oxford, pp 203–226

    MATH  Google Scholar 

  • Trapletti A, Hornik K (2019) tseries: time series analysis and computational finance. R package version 0.10-47

  • Van der Vaart AW (1998) Asymptotic statistics, vol 3. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

  • Zhou H, You J, Zhou B (2010) Statistical inference for fixed-effects partially linear regression models with errors in variables. Stat Pap 51(3):629–650

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Navarro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesneau, C., El Kolei, S. & Navarro, F. Parametric estimation of hidden Markov models by least squares type estimation and deconvolution. Stat Papers 63, 1615–1648 (2022). https://doi.org/10.1007/s00362-022-01288-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01288-x

Keywords

Mathematics Subject Classification

Navigation