Skip to main content

Advertisement

Log in

Unified smoothed jackknife empirical likelihood tests for comparing income inequality indices

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In the economic and social development, income inequality is an important issue. To measure the income inequality or poverty, many economic indices were introduced in the literature, including the Gini index, Bonferroni index and De Vergottini index, etc. Inference approaches to these indices have been studied extensively in the past decades. By noting that these indices can be written in a unified integral form of the weighted Lorenz curve, this paper develops a smoothed jackknife empirical likelihood (EL) method to make inferences on the difference between indices in a unified framework. Under some mild conditions, we derive the asymptotic distribution of the log EL ratio statistic. Moreover, we carry out extensive Monte Carlo simulation studies and real data analysis to illustrate the performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aaberge R (2000) Characterizations of Lorenz curves and income distributions. Soc Choice Welf 17(4):639–653

    Article  MATH  Google Scholar 

  • Aaberge R (2007) Gini’s nuclear family. J Econ Inequal 5(3):305–322

    Article  Google Scholar 

  • Aaberge R, Mogstad M (2011) Robust inequality comparisons. J Econ Inequal 9(3):353–371

    Article  Google Scholar 

  • Atkinson AB (1970) On the measurement of inequality. J Econ Theory 2(3):244–263

    Article  MathSciNet  Google Scholar 

  • Bárcena E, Imedio LJ (2008) The Bonferroni, Gini, and De Vergottini indices. Inequality, welfare, and deprivation in the European Union in 2000. Res Econ Inequal 16:231–257

    Article  Google Scholar 

  • Barrett GF, Pendakur K (1995) The asymptotic distribution of the generalized Gini indices of inequality. Can J Econ 28(4):1042–1055

    Article  Google Scholar 

  • Barrett GF, Donald SG, Bhattacharya D (2014) Consistent nonparametric tests for Lorenz dominance. J Bus Econ Stat 32(1):1–13

    Article  MathSciNet  Google Scholar 

  • Bellani L, Bia M (2019) The long-run effect of childhood poverty and the mediating role of education. J R Stat Soc A 182(1):37–68

    Article  MathSciNet  Google Scholar 

  • Bidabad B, Bidabad B (2019) Functional form for estimating the Lorenz curve. Am Finance Bank Rev 4(1):17–21

    Article  Google Scholar 

  • Bonferroni CE (1930) Elementi di statistica generale. Libreria Seber, Firenze

    Google Scholar 

  • Chakravarty SR (2007) A deprivation-based axiomatic characterization of the absolute Bonferroni index of inequality. J Econ Inequal 5(3):339–351

    Article  Google Scholar 

  • Chen Y, Tan H, Berardi U (2018) A data-driven approach for building energy benchmarking using the Lorenz curve. Energy Build 169:319–331

    Article  Google Scholar 

  • Csörgő M, Gastwirth JL, Zitikis R (1998) Asymptotic confidence bands for the Lorenz and Bonferroni curves based on the empirical Lorenz curve. J Stat Plan Inference 74(1):65–91

    Article  MathSciNet  MATH  Google Scholar 

  • Dardanoni V, Forcina A (1999) Inference for Lorenz curve orderings. The Econom J 2(1):49–75

  • De Vergottini M (1940) Sul significato di alcuni indici di concentrazione. Giorn Econ Ann Econ 2(5/6):317–347

    MATH  Google Scholar 

  • Delbosc A, Currie G (2011) Using Lorenz curves to assess public transport equity. J Transp Geogr 19(6):1252–1259

    Article  Google Scholar 

  • Donalson D, Weymark JA (1980) A single parameter generalization of the Gini index and inequality. J Econ Theory 22:67–86

    Article  Google Scholar 

  • Gastwirth JL (1972) The estimation of the Lorenz curve and Gini index. Rev Econ Stat 54:306–316

    Article  MathSciNet  Google Scholar 

  • Gini C (1912) Variabilità e mutuabilità, contributo allo studio delle distribuzioni e delle relazioni statistiche. C. Cuppini, Bologna

    Google Scholar 

  • Giorgi GM, Crescenzi R (2001) A proposal of poverty measures of the Bonferroni inequality index. Metron 59(3–4):3–16

    MathSciNet  MATH  Google Scholar 

  • Giorgi GM, Mondani R (1994) The exact sampling distribution of the Bonferroni concentration index. Metron 52(3–4):5–41

    MathSciNet  MATH  Google Scholar 

  • Giorgi GM, Mondani R (1995) Sampling distribution of the Bonferroni inequality index from exponential population. Sankhya B 57(1):10–18

    MathSciNet  MATH  Google Scholar 

  • Giorgi GM, Nadarajah S (2010) Bonferroni and Gini indices for various parametric families of distributions. Metron 68(1):23–46

    Article  MathSciNet  MATH  Google Scholar 

  • Gong Y, Peng L, Qi Y (2010) Smoothed jackknife empirical likelihood method for ROC curve. J Multivar Anal 101(6):1520–1531

    Article  MathSciNet  MATH  Google Scholar 

  • Jing BY, Yuan J, Zhou W (2009) Jackknife empirical likelihood. J Am Stat Assoc 104(487):1224–1232

    Article  MathSciNet  MATH  Google Scholar 

  • Kakwani NC (1977) Applications of Lorenz curves in economic analysis. Econometrica 45(3):719–728

    Article  MathSciNet  MATH  Google Scholar 

  • Lee WC (1999) Probabilistic analysis of global performances of diagnostic tests: interpreting the Lorenz curve-based summary measures. Stat Med 18(4):455–471

    Article  Google Scholar 

  • Li Z, Wei Y (2018) Statistical inference for the difference of two Lorenz curves. Statistics 52(5):1128–1155

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z, Xu J, Zhou W (2016) On nonsmooth estimation functions via jackknife empirical likelihood. Scand J Stat 43(1):49–69

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz MO (1905) Methods of measuring the concentration of wealth. Publ Am Stat Assoc 9(70):209–219

    Google Scholar 

  • Lubrano M (2013) The econometrics of inequality and poverty. Lecture 4: Lorenz curves, the Gini coefficient and parametric distributions. http://www.vcharite.univ-mrs.fr/PP/lubrano/cours/Lecture-4.pdf

  • Luo S, Qin G (2016) Kernel smoothing and jackknife empirical likelihood-based inferences for the generalized Lorenz curve. Stat Interface 9(1):99–112

    Article  MathSciNet  MATH  Google Scholar 

  • Luo S, Qin G (2019) Jackknife empirical likelihood-based inferences for Lorenz curve with kernel smoothing. Commun Stat Theory Methods 48(3):559–582

    Article  MathSciNet  MATH  Google Scholar 

  • Mehran F (1976) Linear measures of income inequality. Econometrica 44(4):805–809

    Article  MathSciNet  Google Scholar 

  • Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2):237–249

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1990) Empirical likelihood ratio confidence regions. Ann Stat 18(1):90–120

    Article  MathSciNet  MATH  Google Scholar 

  • Palmitesta P, Provasi C, Spera C (2000) Confidence interval estimation for inequality indices of the Gini family. Comput Econ 16(1):137–147

    Article  MATH  Google Scholar 

  • Peng L (2011) Empirical likelihood methods for the Gini index. Aust NZ J Stat 53(2):131–139

    Article  MathSciNet  MATH  Google Scholar 

  • Qin Y, Rao J, Wu C (2010) Empirical likelihood confidence intervals for the Gini measure of income inequality. Econ Model 27(6):1429–1435

    Article  Google Scholar 

  • Ryu HK (2008) Maximum entropy estimation of income distributions from Bonferroni indices. In: Modeling income distributions and Lorenz curves. Springer, New York

  • Sang Y, Dang X, Zhao Y (2019) Jackknife empirical likelihood methods for Gini correlations and their equality testing. J Stat Plan Inference 199:45–59

    Article  MathSciNet  MATH  Google Scholar 

  • Shorrocks AF, Foster JE (1987) Transfer sensitive inequality measures. Rev Econ Stud 54(3):485–497

    Article  MathSciNet  MATH  Google Scholar 

  • Sun Z, Beare BK (2021) Improved nonparametric bootstrap tests of Lorenz dominance. J Bus Econ Stat 39(1):189–199

    Article  MathSciNet  Google Scholar 

  • Wang D, Zhao Y (2016) Jackknife empirical likelihood for comparing two Gini indices. Can J Stat 44(1):102–119

    Article  MathSciNet  MATH  Google Scholar 

  • Wang D, Zhao Y, Gilmore DW (2016) Jackknife empirical likelihood confidence interval for the Gini index. Stat Probab Lett 110:289–295

    Article  MathSciNet  MATH  Google Scholar 

  • Xu K (2000) Inference for generalized Gini indices using the iterated-bootstrap method. J Bus Econ Stat 18(2):223–227

    Google Scholar 

  • Xu K (2007) U-statistics and their asymptotic results for some inequality and poverty measures. Econom Rev 26(5):567–577

    Article  MathSciNet  MATH  Google Scholar 

  • Yitzhaki S (1983) On an extension of the Gini inequality index. Int Econ Rev 24(3):617–628

    Article  MATH  Google Scholar 

  • Zenga M (2007) Inequality curve and inequality index based on the ratios between lower and upper arithmetic means. Stat Appl 5:3–27

    Google Scholar 

  • Zheng B (2018) Almost Lorenz dominance. Soc Choice Welf 51(1):51–63

    Article  MathSciNet  MATH  Google Scholar 

  • Zoli C (2002) Inverse stochastic dominance, inequality measurement and Gini indices. J Econ 77(1):119–161

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Editor and two anonymous referees for their helpful and constructive comments that have led to significant improvements in the paper. This work is supported by the National Natural Science Foundation of China (11571154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

Before proceeding to the proofs, we list some notations. Put

$$\begin{aligned} \left\{ \begin{array}{ll} &{} \sigma _1^2 =\int _{0}^{\infty }\Big [\int _{{\mathscr {B}}}w(t)(x-\xi _t)I(x\le \xi _t)dt\Big ]^2 dF(x)-\big [\int _{{\mathscr {B}}}w(t)(\theta _1(t)-t\xi _t)dt\big ]^2,\\ &{} \sigma _2^2 =\int _{0}^{\infty }\Big [\int _{{\mathscr {B}}}w(t)(y-\zeta _t)I(y\le \zeta _t)dt\Big ]^2 dG(y)-\big [\int _{{\mathscr {B}}}w(t)(\theta _2(t)-t\zeta _t)dt\big ]^2,\\ &{} c_1=\int _{{\mathscr {B}}}w(t)\big [\xi _t(\theta _1(t)-t\mu _1)+\int _{0}^{\xi _t}x^2dF(x)-\mu _1\theta _1(t)\big ]dt,\\ &{} c_2=\int _{{\mathscr {B}}}w(t)\big [\zeta _t(\theta _2(t)-t\mu _2)+\int _{0}^{\zeta _t}y^2dG(y)-\mu _2\theta _2(t)\big ]dt,\\ &{} \sigma _{11}^2=\mu _2^2\sigma _1^2+\left[ \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\mu _2\Delta \right] ^2\text{ var }(X) -2\mu _2\left[ \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\mu _2\Delta \right] \cdot c_1,\\ &{} \sigma _{22}^2=\mu _1^2\sigma _2^2+\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\mu _1\Delta \right] ^2\text{ var }(Y) -2\mu _1\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\mu _1\Delta \right] \cdot c_2,\\ &{}\sigma ^2 =(1+c^{-1})\sigma _{11}^2 +(1+c)\sigma _{22}^2,~\mathrm {where~c~is~defined~in~condition~(C2)}, \\ &{} {\widehat{V}}^{(1)}_k =n {{\widehat{T}}}^{(1)}_n-(n-1){{\widehat{T}}}^{(1)}_{n-1,k} ,~k=1, 2, \ldots , n. \end{array}\right. \end{aligned}$$

Lemma 1

When conditions (C1), (C3) and (C4) hold, we have

$$\begin{aligned} \sqrt{n} \left[ {{\widehat{T}}}^{(1)}_n-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] \xrightarrow {d} N(0,\sigma _1^2),\quad \text{ as } n \rightarrow \infty \text{. } \end{aligned}$$
(22)

Proof

First, from Eq. (10), we can divide Eq. (22) into three parts as follows

$$\begin{aligned}&\sqrt{n}\left[ {{\widehat{T}}}^{(1)}_n - \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \right] \nonumber \\&\quad =\sqrt{n}\left[ \frac{1}{n}\sum _{i=1}^nX_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_i)}{h_1}\right) dt\nonumber \right. \\&\left. \qquad -\frac{1}{n}\sum _{i=1}^nX_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F(X_i)}{h_1}\right) dt\right] \nonumber \\&\qquad +\sqrt{n}\left[ \frac{1}{n}\sum _{i=1}^nX_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F(X_i)}{h_1}\right) dt-\int _{{\mathscr {B}}}w(t)\int _0^{\xi _t} xdF(x)dt\right] \nonumber \\&\quad = \int _{0}^{\infty }x\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(x)}{h_1}\right) -K_1\left( \frac{t-F(x)}{h_1}\right) \right] dtd[\sqrt{n}(F_n(x)-F(x))] \nonumber \\&\qquad +\sqrt{n}\int _{0}^{\infty }x\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(x)}{h_1}\right) -K_1\left( \frac{t-F(x)}{h_1}\right) \right] dtdF(x) \nonumber \\&\qquad +\sqrt{n}\left[ \frac{1}{n}\sum _{i=1}^nX_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F(X_i)}{h_1}\right) dt-\int _{{\mathscr {B}}}w(t)\int _0^{\xi _t} xdF(x)dt\right] \nonumber \\&\quad =: J_1+J_2+J_3. \end{aligned}$$
(23)

Note that \(\sqrt{n} [F_n(x)-F(x)] \xrightarrow d B(x)\), as \(n\rightarrow \infty \), where B(x) is a Gaussian process. By condition (C1), and the Taylor expansion, we obtain

$$\begin{aligned} J_2= & {} \sqrt{n}\int _{0}^{\infty } x\int _{{\mathscr {B}}}w(t)\left[ k_1\left( \frac{t-F(x)}{h_1}\right) dt\frac{F(x)-F_n(x)}{h_1} \right. \nonumber \\&\quad \left. + \frac{1}{2}k'_1\left( \frac{t-F(x)}{h_1}\right) \left( \frac{ F(x)-F_n(x)}{h_1}\right) ^2 \right] dtdF(x)+o_p(1)\nonumber \\= & {} -\int _{0}^{\infty } x\int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F(x)}{h_1}\right) \frac{\sqrt{n} (F_n(x)-F(x))}{h_1}dtdF(x) +O_p\left( \frac{1}{\sqrt{n}h_1^2}\right) \nonumber \\= & {} -\int _{{\mathscr {B}}}w(t)\int _{-1}^{1} F^{-1}(y) k_1\left( \frac{t-u}{h_1}\right) \frac{\sqrt{n} \left[ \frac{1}{n}\sum _{k=1}^nI(F(X_k)\le u)-u\right] }{h_1}dudt +o_p(1) \nonumber \\= & {} -\int _{{\mathscr {B}}}w(t)\int _{\frac{t-1}{h_1}}^{\frac{t+1}{h_1}} F^{-1}(t-h_1v) k_1(v) \sqrt{n}\nonumber \\&\quad \times \left[ \frac{1}{n}\sum _{k=1}^nI(F(X_k) \le t-h_1v)-(t-h_1v)\right] dvdt +o_p(1) \nonumber \\= & {} -\int _{{\mathscr {B}}}w(t)\xi _t\sqrt{n}(F_n(\xi _t)-t)dt+o_p(1). \end{aligned}$$
(24)

Similarly, we can obtain \(J_1=o_p(1)\).

It follows from the condition (C1) that

$$\begin{aligned} I(x \le \xi _t) - K_1\left( \frac{t-F(x)}{h_1}\right) = \left\{ \begin{matrix} 1 - K_1\left( \frac{t-F(x)}{h_1}\right) , &{} h_1 \ge t - F(x) > 0, \\ - K_1\left( \frac{t-F(x)}{h_1}\right) , &{} 0 \ge t - F(x) \ge -h_1, \\ 0, &{} \mathrm {otherwise}, \end{matrix}\right. \end{aligned}$$

and noting that \(k_1(x)\) and \(k_2(x)\) are even functions in the domain \([-1,1]\). So, for \(i=1,2\), we have

$$\begin{aligned} \int _{-1}^1K_i(v)dv= & {} \int _{-1}^1\int _{-1}^vk_i(x)dxdv=\int _{-1}^1k_i(x)\int _{-1}^xdvdx\\= & {} \int _{-1}^1xk_i(x)dx + \int _{-1}^1k_i(x)dx = 1. \end{aligned}$$

By condition (C3), it can be verified that

$$\begin{aligned}&\lim _{h_1\rightarrow 0}\sqrt{n} \Big | \int _0^{\xi _t} xdF(x) - E\left[ X K_1\left( \frac{t-F(X)}{h_1}\right) \right] \Big |\\&\quad =\lim _{h_1\rightarrow 0}\sqrt{n} \Big | \int _0^{\infty } xI(x\le \xi _t)dF(x) - \int _0^{\infty } xK_1\left( \frac{t-F(x)}{h_1}\right) dF(x) \Big |\\&\quad = \lim _{h_1\rightarrow 0}\sqrt{n}\Big |\int _{-h_1}^{h_1} F^{-1}(t - u) \left[ I(0\le u) - K_1\left( \frac{u}{h_1}\right) \right] du\Big |\\&\quad = \lim _{h_1\rightarrow 0}\sqrt{n}h_1\xi _t\Big |1- \int _{-1}^{1} K_1(v) dv\Big | = 0, \end{aligned}$$

which yields

$$\begin{aligned} \sqrt{n} \int _0^{\xi _t} xdF(x) =\sqrt{n} E\left[ X K_1\left( \frac{t-F(X)}{h_1}\right) \right] +o(1). \end{aligned}$$

Therefore,

$$\begin{aligned} J_3= & {} \sqrt{n}\left\{ \frac{1}{n}\sum _{i=1}^nX_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F(X_i)}{h_1}\right) dt\nonumber \right. \\&\quad \left. -E\left[ X\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F(X)}{h_1}\right) dt\right] \right\} +o(1). \end{aligned}$$
(25)

Furthermore, it follows from Eqs. (23), (24) and (25) that

$$\begin{aligned}&\sqrt{n}\left[ {{\widehat{T}}}^{(1)}_n - \theta _1(t) \right] \nonumber \\&\quad =\sqrt{n}\int _{{\mathscr {B}}}w(t)\left\{ \frac{1}{n}\sum _{i=1}^nX_i K_1\left( \frac{t-F(X_i)}{h_1}\right) -\xi _t\frac{1}{n}\sum _{i=1}^nI(X_i\le \xi _t) \right. \nonumber \\&\qquad \left. -E\left[ X K_1\left( \frac{t-F(X)}{h_1}\right) -\xi _t I(X \le \xi _t)\right] \right\} dt +o_p(1). \end{aligned}$$
(26)

For deriving the asymptotic distribution of \(\sqrt{n}\left[ {{\widehat{T}}}^{(1)}_n - \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \right] \), write

$$\begin{aligned} \left\{ \begin{array}{ll} W_i:=\int _{{\mathscr {B}}}w(t)X_i K_1\left( \frac{t-F(X_i)}{h_1}\right) dt-\int _{{\mathscr {B}}}w(t)\xi _tI(X_i\le \xi _t)dt,\\ W:=\int _{{\mathscr {B}}}w(t)X K_1\left( \frac{t-F(X)}{h_1}\right) dt-\int _{{\mathscr {B}}}w(t)\xi _tI(X\le \xi _t)dt, \end{array}\right. \end{aligned}$$

we thus obtain

$$\begin{aligned} \sqrt{n}\left[ {{\widehat{T}}}^{(1)}_n - \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \right] =\frac{1}{\sqrt{n}}\sum _{i=1}^n\left[ W_i-EW_i\right] +o_p(1). \end{aligned}$$
(27)

Noticing that

$$\begin{aligned} \lim _{h_1\rightarrow 0}E [W]= & {} \lim _{h_1\rightarrow 0}E\int _{{\mathscr {B}}}w(t)X K_1\left( \frac{t-F(X)}{h_1}\right) dt-\xi _t E[I(X\le \xi _t)]dt \nonumber \\= & {} \lim _{h_1\rightarrow 0}\int _{0}^{\infty }x\int _{{\mathscr {B}}}w(t)\left[ \int _{-\infty }^{\frac{t-F(x)}{h_1}}k_1(u)du \right] f(x)dtdx\nonumber \\&\quad -\int _{{\mathscr {B}}}w(t)\xi _t\int _{-\infty }^{\xi _t}dF(x)dt\nonumber \\= & {} \int _{{\mathscr {B}}}w(t)\int _{0}^{\infty }x I(F(x)\le t)f(x)dxdt-\int _{{\mathscr {B}}}w(t)t \xi _tdt\nonumber \\= & {} \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\int _{{\mathscr {B}}}w(t)t\xi _tdt, \end{aligned}$$
(28)

and

$$\begin{aligned}&\lim _{h_1\rightarrow 0}E[W^2]=\lim _{h_1\rightarrow 0}E\left[ \int _{{\mathscr {B}}}w(t)X K_1\left( \frac{t-F(X)}{h_1}\right) dt-\int _{{\mathscr {B}}}w(t)\xi _tI(X\le \xi _t)dt\right] ^2 \nonumber \\&\quad =\lim _{h_1\rightarrow 0}E\left\{ \left[ \int _{{\mathscr {B}}}w(t)X K_1\left( \frac{t-F(X)}{h_1}\right) dt\right] ^2+\left[ \int _{{\mathscr {B}}}w(t)\xi _tI(X\le \xi _t)dt\right] ^2\right. \nonumber \\&\qquad \left. -2\int _{{\mathscr {B}}}w(t)X K_1\left( \frac{t-F(X)}{h_1}\right) dt\int _{{\mathscr {B}}}w(t)\xi _t I(X\le \xi _t)dt\right\} \nonumber \\&\quad =\lim _{h_1\rightarrow 0}\int _{0}^{\infty }x^2 \left[ \int _{{\mathscr {B}}}w(t)\int _{-\infty }^{\frac{t-F(x)}{h_1}}k_1(u)du dt\right] ^2f(x)dx\nonumber \\&\qquad +\int _{0}^{\infty }\left[ \int _{{\mathscr {B}}}w(t)\xi _tI(x\le \xi _t)dt\right] ^2f(x)dx\nonumber \\&\qquad -2\lim _{h_1\rightarrow 0}\int _{0}^{\infty }x \left[ \int _{{\mathscr {B}}}w(t)\int _{-\infty }^{\frac{t-F(x)}{h_1}}k_1(u)dudt \right] \left[ \int _{{\mathscr {B}}}w(t)\xi _tI(x\le \xi _t)dt\right] f(x)dx \nonumber \\&\quad =\int _{0}^{\infty }\left[ \int _{{\mathscr {B}}}w(t)(x-\xi _t)I(x\le \xi _t)dt\right] ^2 dF(x). \end{aligned}$$
(29)

Thus, we obtain

$$\begin{aligned} \text{ Var }[W]= & {} \int _{0}^{\infty }\left[ \int _{{\mathscr {B}}}w(t)(x-\xi _t)I(x\le \xi _t)dt\right] ^2 dF(x)\\&\quad -\left[ \int _{{\mathscr {B}}}w(t)(\theta _1(t)-t\xi _t)dt\right] ^2+o(1)=\sigma _1^2+o(1). \end{aligned}$$

Now, combining Eqs. (27)–(29) with the central limit theorem, leads to

$$\begin{aligned} \sqrt{n}\left[ {{\widehat{T}}}^{(1)}_n- \int _{{\mathscr {B}}}\theta _1(t)dt \right] \overset{d}{\rightarrow } N(0,\sigma _1^2),\quad \text{ as } n\rightarrow \infty . \end{aligned}$$

This completes the proof. \(\square \)

Lemma 2

Under the condition (C1), (C3) and (C4), we have

$$\begin{aligned} \sum _{k=1}^n\Big [{{\widehat{T}}}^{(1)}_n-{{\widehat{T}}}^{(1)}_{n-1,k}\Big ]= O_p\left( \frac{1}{nh_1^2}\right) ,\quad \text{ as } n\rightarrow \infty . \end{aligned}$$

Proof

From Eqs. (9) and (12), we have

$$\begin{aligned}&{{\widehat{T}}}^{(1)}_n-{{\widehat{T}}}^{(1)}_{n-1,k}\\&\quad =\frac{1}{n}\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_i)}{h_1}\right) dt\\&\qquad - \frac{1}{n-1}\sum _{i\ne k}X_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) dt\\&\quad =\frac{1}{n}\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_i)}{h_1}\right) dt\\&\qquad - \frac{1}{n-1}\sum _{i=1}^nX_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) dt\\&\qquad +\frac{1}{n-1}X_k\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt\\&\quad =\frac{1}{n-1}\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_i)}{h_1}\right) dt\\&\qquad - \frac{1}{n-1}\sum _{i=1}^nX_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) dt\\&\qquad -\frac{1}{n(n-1)}\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_i)}{h_1}\right) dt\\&\qquad +\frac{1}{n-1}X_k\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt\\&\quad =\frac{1}{n-1}\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) - K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt\\&\qquad -\frac{1}{n(n-1)}\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_i)}{h_1}\right) dt\\&\qquad +\frac{1}{n-1}X_k\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt, \end{aligned}$$

thus,

$$\begin{aligned}&\sum _{k=1}^n\Big [{{\widehat{T}}}^{(1)}_n-{{\widehat{T}}}^{(1)}_{n-1,k}\Big ]\\&\quad =\frac{1}{n-1}\sum _{k=1}^n\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) - K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt\\&\qquad -\frac{1}{n-1}\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_i)}{h_1}\right) dt\\&\qquad +\frac{1}{n-1}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt\\&\quad =\frac{1}{n-1}\sum _{k=1}^n\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) - K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt\\&\qquad -\frac{1}{n-1}\sum _{k=1}^n X_k\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_k)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) \right] dt\\&\quad =:P_1 - P_2. \end{aligned}$$

Note that

$$\begin{aligned} F_{n,k}(X)-F_n(X)=\frac{1}{n-1}\{F_n(X)-I(X_k\le X)\}=O_{p}\left( \frac{1}{n}\right) , \end{aligned}$$
(30)

and \(\sum _{k=1}^n[F_n(X)-F_{n,k}(X)]=0\). By the Taylor expression, we have

$$\begin{aligned}&K_1\left( \frac{t-F_{n,k}(X)}{h_1}\right) -K_1\left( \frac{t-F_n(X)}{h_1}\right) \nonumber \\&\quad = k_1\left( \frac{t-F_n(X)}{h_1}\right) \frac{F_{n,k}(X)-F_n(X)}{h_1}+ \frac{1}{2}k^{\prime }_1\left( \frac{t-\rho _{n,k,i}}{h_1}\right) \left( \frac{F_{n,k}(X)-F_n(X)}{h_1} \right) ^2 \nonumber \\&\quad = k_1\left( \frac{t-F_n(X)}{h_1}\right) \frac{F_{n,k}(X)-F_n(X)}{h_1}+O_p\left( \frac{1}{n^2h_1^2}\right) \nonumber \\&\quad = O_{p}\left( \frac{1}{nh_1}\right) , \end{aligned}$$
(31)

where \(\rho _{n,k,i}\) is random variables between \(F_n(X)\) and \(F_{n,k}(X)\), the \(P_1\) thus can be written as

$$\begin{aligned} P_1&=\frac{1}{n-1}\sum _{k=1}^n\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) - K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt\\&=\frac{1}{n-1}\sum _{k=1}^n\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)\left[ k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_n(X_i)-F_{n,k}(X_i)}{h_1}\right. \\&\left. \quad +O_p\left( \frac{1}{n^2h_1^2}\right) \right] dt\\&=\frac{1}{n-1}\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)k_1\left( \frac{t-F_n(X_i)}{h_1}\right) dt\left( \frac{\sum _{k=1}^n[F_n(X_i)-F_{n,k}(X_i)]}{h_1}\right) \\&\quad +O_p\left( \frac{1}{nh_1^2}\right) \\&=O_p\left( \frac{1}{nh_1^2}\right) . \end{aligned}$$

From Eq. (31), and similar to \(P_1\), we can get

$$\begin{aligned} P_2= & {} \frac{1}{n-1}\sum _{k=1}^n X_k\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_k)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) \right] dt\\= & {} O_{p}\left( \frac{1}{nh_1}\right) . \end{aligned}$$

Combining the \(P_1\) and \(P_2\), then

$$\begin{aligned} \sum _{k=1}^n\Big [{{\widehat{T}}}^{(1)}_n-{{\widehat{T}}}^{(1)}_{n-1,k}\Big ]=P_1-P_2= O_p\left( \frac{1}{nh_1^2}\right) . \end{aligned}$$

The proof is completed. \(\square \)

Lemma 3

Under the condition (C1), (C3) and (C4), we have

$$\begin{aligned} \sqrt{n} \left[ \frac{1}{n}\sum _{k=1}^n {\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}\theta _1(t)dt \right] \xrightarrow {d} N(0,\sigma _1^2), \quad \text{ as } n \rightarrow \infty . \end{aligned}$$
(32)

Proof

From Lemmas 1 and 2, we have

$$\begin{aligned}&\sqrt{n} \left[ \frac{1}{n}\sum _{k=1}^n {\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}\theta _1(t)dt \right] \\&\quad =\sqrt{n} \Big \{ \frac{1}{n}\sum _{k=1}^n\Big [n {{\widehat{T}}}^{(1)}_n-(n-1){{\widehat{T}}}^{(1)}_{n-1,k}\Big ]-\int _{{\mathscr {B}}}\theta _1(t)dt \Big \}\\&\quad =\sqrt{n}\left[ {{\widehat{T}}}^{(1)}_n- \int _{{\mathscr {B}}}\theta _1(t)dt \right] + \frac{n-1}{\sqrt{n}}\sum _{k=1}^n\Big [{{\widehat{T}}}^{(1)}_n-{{\widehat{T}}}^{(1)}_{n-1,k}\Big ]\\&\quad =\sqrt{n}\left[ {{\widehat{T}}}^{(1)}_n- \int _{{\mathscr {B}}}\theta _1(t)dt \right] + O_p\left( \frac{1}{\sqrt{n}h_1^2}\right) \\&\quad \xrightarrow {d} N(0,\sigma _1^2). \end{aligned}$$

This completes the proof. \(\square \)

Proof of Theorem 1

Using (8) and (9), we have

$$\begin{aligned}&\sqrt{m+n} {\widehat{D}}_{m,n}(\Delta ) \nonumber \\&\quad =\sqrt{m+n} \left[ {\bar{Y}} {{\widehat{T}}}^{(1)}_n - {\bar{X}}{{\widehat{T}}}^{(2)}_m -\Delta \cdot {\bar{X}}{\bar{Y}} \right] \nonumber \\&\quad =\sqrt{m+n} \left[ {\bar{Y}}{{\widehat{T}}}^{(1)}_n -\mu _2\int _{{\mathscr {B}}}w(t)\theta _1 (t)dt\right] \nonumber \\&\qquad -\sqrt{m+n}\left[ {\bar{X}}{{\widehat{T}}}^{(2)}_m - \mu _1\int _{{\mathscr {B}}}w(t)\theta _2 (t)dt \right] \nonumber \\&\qquad -\sqrt{m+n}\left[ \Delta \cdot {\bar{X}}{\bar{Y}}-\Delta \cdot \mu _1\mu _2 \right] \nonumber \\&\quad =\sqrt{m+n} \left[ {\bar{Y}}{{\widehat{T}}}^{(1)}_n -\mu _2\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] \nonumber \\&\qquad -\sqrt{m+n}\left[ {\bar{X}}{{\widehat{T}}}^{(2)}_m - \mu _1\int _{{\mathscr {B}}}w(t)\theta _2 (t)dt \right] \nonumber \\&\qquad -\sqrt{m+n}\Big \{ \Delta \cdot ({\bar{X}}-\mu _1 )\cdot \mu _2+\Delta \cdot ({\bar{Y}}-\mu _2)\cdot \mu _1 +\Delta \cdot ({\bar{X}}-\mu _1) \cdot ({\bar{Y}}- \mu _2)\Big \} \nonumber \\&\quad =\sqrt{m+n} \Big \{ {\bar{Y}}{{\widehat{T}}}^{(1)}_n -\mu _2\int _{{\mathscr {B}}}w(t)\theta _1(t)dt- \Delta \cdot ({\bar{Y}}-\mu _2)\cdot \mu _1 \Big \} \nonumber \\&\qquad -\sqrt{m+n}\Big \{{\bar{X}}{{\widehat{T}}}^{(2)}_m - \mu _1\int _{{\mathscr {B}}}w(t)\theta _2 (t)dt + \Delta \cdot ({\bar{X}}-\mu _1 )\cdot \mu _2\Big \}\nonumber \\&\qquad +\sqrt{m+n}\Delta \cdot ({\bar{X}}-\mu _1) \cdot ({\bar{Y}}- \mu _2) \nonumber \\&\quad =: I_1+I_2+I_3. \end{aligned}$$
(33)

Applying Lemma 1 yields that

$$\begin{aligned} {{\widehat{T}}}^{(1)}_n=\int _{{\mathscr {B}}}w(t)\theta _1(t)dt+O_{p}\left( \frac{1}{\sqrt{n}}\right) ,\quad {{\widehat{T}}}^{(2)}_m =\int _{{\mathscr {B}}}w(t)\theta _2(t)dt+O_{p}\left( \frac{1}{\sqrt{m}}\right) . \end{aligned}$$

Moreover, since

$$\begin{aligned}&I_1=\sqrt{m+n} \Big \{ {\bar{Y}}{{\widehat{T}}}^{(1)}_n -\mu _2\int _{{\mathscr {B}}}w(t)\theta _1(t)dt- \Delta \cdot ({\bar{Y}}-\mu _2)\cdot \mu _1 \Big \} \\&\quad =\sqrt{m+n} ({\bar{Y}}-\mu _2)\left[ {{\widehat{T}}}^{(1)}_n - \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \right] \\&\qquad + \sqrt{m+n} \left[ {{\widehat{T}}}^{(1)}_n - \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \right] \mu _2\\&\qquad +\sqrt{m+n}({\bar{Y}}-\mu _2)\int _{{\mathscr {B}}}w(t)\theta _1(t)dt -\sqrt{m+n}\Delta \cdot ({\bar{Y}}-\mu _2)\cdot \mu _1 \\&\quad =\sqrt{m+n} O_{p}\left( \frac{1}{\sqrt{m}}\right) O_{p}\left( \frac{1}{\sqrt{n}}\right) + \sqrt{m+n} \left[ {{\widehat{T}}}^{(1)}_n - \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \right] \mu _2\\&\qquad +\sqrt{m+n}({\bar{Y}}-\mu _2) \left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\Delta \cdot \mu _1 \right] \\&\quad = \sqrt{m+n} \left[ {{\widehat{T}}}^{(1)}_n - \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \right] \mu _2\\&\qquad +\sqrt{m+n}({\bar{Y}}-\mu _2) \left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\Delta \cdot \mu _1 \right] +o_{p}(1),\\&I_2=-\sqrt{m+n} \left[ {{\widehat{T}}}^{(2)}_m - \int _{{\mathscr {B}}}w(t)\theta _2(t)dt \right] \mu _1\\&\qquad -\sqrt{m+n}({\bar{X}}-\mu _1) \left[ \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \right] +o_{p}(1), \end{aligned}$$

\(I_3=o_{p}(1)\), which implies that

$$\begin{aligned}&\sqrt{m+n} {\widehat{D}}_{m,n}(\Delta ) \nonumber \\&\quad =\sqrt{m+n} \left[ {{\widehat{T}}}^{(1)}_n - \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \right] \mu _2\nonumber \\&\qquad +\sqrt{m+n}({\bar{Y}}-\mu _2) \left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\Delta \cdot \mu _1 \right] \nonumber \\&\qquad -\sqrt{m+n} \left[ {{\widehat{T}}}^{(2)}_m - \int _{{\mathscr {B}}}w(t)\theta _2(t)dt \right] \mu _1\nonumber \\&\qquad -\sqrt{m+n}({\bar{X}}-\mu _1) \left[ \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \right] +o_{p}(1)\nonumber \\&\quad =\sqrt{m+n} \Big \{\Big [ {{\widehat{T}}}^{(1)}_n \!-\! \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \Big ]\mu _2\!-\!({\bar{X}}-\mu _1) \Big [ \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \Big ]\Big \}\nonumber \\&\qquad +\sqrt{m+n}\Big \{({\bar{Y}}-\mu _2) \Big [ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\Delta \cdot \mu _1 \Big ]\nonumber \\&\qquad - \Big [ {{\widehat{T}}}^{(2)}_m - \int _{{\mathscr {B}}}w(t)\theta _2(t)dt \Big ]\mu _1\Big \}+o_{p}(1)\nonumber \\&\quad =: A_1+A_2+o_{p}(1). \end{aligned}$$
(34)

By (27), (28) and (29), and noting that \(A_1\) is independent of \(A_2\), we have that

$$\begin{aligned} A_1= & {} \sqrt{m+n} \Big \{\Big [ {{\widehat{T}}}^{(1)}_n \!-\! \int _{{\mathscr {B}}}w(t)\theta _1(t)dt \Big ]\mu _2\!-\!({\bar{X}}-\mu _1) \Big [ \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \Big ]\Big \}\\= & {} \frac{\sqrt{m+n}}{n}\left\{ \sum _{i=1}^n [W_i-EW_i]\mu _2\nonumber \right. \\&\quad \left. - \sum _{i=1}^n(X_i-\mu _1)\Big [ \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \Big ]\right\} +o_p(1). \end{aligned}$$

Again, write

$$\begin{aligned} \left\{ \begin{array}{ll} M_i=\mu _2W_i-X_i(\int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 ),\\ M=\mu _2W-X( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2), \end{array}\right. \end{aligned}$$

thus,

$$\begin{aligned} A_1 =\frac{\sqrt{m+n} }{\sqrt{n}} \frac{1}{\sqrt{n}}\sum _{i=1}^n [M_i-EM_i]+o_p(1) . \end{aligned}$$
(35)

By (28) and conditions (C1)–(C4), we can show that

$$\begin{aligned} \lim _{h_1\rightarrow 0}E[M]&=\lim _{h_1\rightarrow 0}E\left[ \mu _2W-X\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \right) \right] \nonumber \\&= \mu _2\left[ \int _{{\mathscr {B}}}w(t)(\theta _1(t)-t\xi _t)dt\right] -\mu _1\left[ \left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \right) \right] \nonumber \\&= -\mu _2\left[ \int _{{\mathscr {B}}}w(t)t\xi _tdt\right] , \end{aligned}$$
(36)

and

$$\begin{aligned}&\lim _{h_1\rightarrow 0}E[X\cdot W]\nonumber \\&\quad =\lim _{h_1\rightarrow 0}E\left[ \int _{{\mathscr {B}}}w(t)X^2 K_1\left( \frac{t-F(X)}{h_1}\right) dt\right] -E\left[ X\int _{{\mathscr {B}}}w(t)\xi _tI(X\le \xi _t)dt\right] \nonumber \\&\quad =\int _{0}^{\infty }\int _{{\mathscr {B}}}w(t)x^2\Big [\lim _{h_1\rightarrow 0}\int _{-\infty }^{\frac{t-F(x)}{h_1}}k_1(z)dz\Big ]dtdF(x)-\int _{{\mathscr {B}}}w(t)\xi _t\theta _1(t)dt\nonumber \\&\quad =\int _{0}^{\infty }\int _{{\mathscr {B}}}w(t)x^2I(x\le \xi _t)dtdF(x)-\int _{{\mathscr {B}}}w(t)\xi _t\theta _1(t)dt\nonumber \\&\quad =\int _{{\mathscr {B}}}w(t)\Big [\int _{0}^{\xi _t}x^2dF(x)-\xi _t\theta _1(t)\Big ]dt. \end{aligned}$$
(37)

Likewise, using (29), (37) and condition (C4), we have

$$\begin{aligned}&\lim _{h_1\rightarrow 0}E[M^2] \nonumber \\&\quad =\mu _2^2\lim _{h_1\rightarrow 0}E[W^2]-\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \right) ^2E[X^2]\nonumber \\&\qquad -2\mu _2\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2\right) \lim _{h_1\rightarrow 0}E[X\cdot W] \nonumber \\&\quad =\mu _2^2\int _{0}^{\infty }\left[ \int _{{\mathscr {B}}}w(t)(x-\xi _t)I(x\le \xi _t)dt\right] ^2 dF(x)\nonumber \\&\qquad -\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \right) ^2E[X^2]\nonumber \\&\qquad -2\mu _2\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2\right) \int _{{\mathscr {B}}}w(t)\left[ \int _{0}^{\xi _t}x^2dF(x)-\xi _t\theta _1(t)\right] dt.\nonumber \\ \end{aligned}$$
(38)

It follows from (36) and (38) that

$$\begin{aligned} \text{ Var }[M]&=E[M^2] -(E[M])^2 \\&=\mu _2^2\int _{0}^{\infty }\left[ \int _{{\mathscr {B}}}w(t)(x-\xi _t)I(x\le \xi _t)dt\right] ^2 dF(x)\\&\quad -\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2 \right) ^2E[X^2]\\&\quad -2\mu _2\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\Delta \cdot \mu _2\right) \int _{{\mathscr {B}}}w(t)\left[ \int _{0}^{\xi _t}x^2dF(x)-\xi _t\theta _1(t)\right] dt\\&\quad -\mu _2^2\left[ \int _{{\mathscr {B}}}w(t)t\xi _tdt\right] ^2+o_p(1)\\&=\sigma _{11}^2+o_p(1). \end{aligned}$$

Now, by condition (C2) and Eq. (35), and the central limit theorem, we get

$$\begin{aligned} A_{1}=\frac{\sqrt{m+n} }{\sqrt{n}} \frac{1}{\sqrt{n}}\sum _{i=1}^n (M_i-EM_i) \xrightarrow {d}N\left( 0,\frac{c+1}{c}\sigma _{11}^2\right) . \end{aligned}$$

Similarly, we can show that

$$\begin{aligned} A_2 \xrightarrow {d}N(0,(c+1)\sigma _{22}^2), \quad \text{ as } n\rightarrow \infty . \end{aligned}$$

Based on these arguments, we then have, as \(n\rightarrow \infty \),

$$\begin{aligned} \sqrt{m+n} {\widehat{D}}_{m,n}(\Delta )=A_1+A_2+o_{p}(1) \xrightarrow {d} N(0,\sigma ^2), \end{aligned}$$

where \(\sigma ^2 =(1+c^{-1})\sigma _{11}^2 +(1+c)\sigma _{22}^2.\) \(\square \)

Lemma 4

Under the conditions (C1)–(C4), we have

$$\begin{aligned} \frac{1}{\sqrt{m+n}}\sum _{k=1}^{m+n}{\widehat{V}} _k(\Delta ) \xrightarrow {d} N(0,\sigma ^2 (t)),\quad \text{ as } n \rightarrow \infty . \end{aligned}$$

Proof

Since \(\sum _{k=1}^n({\bar{X}}-{\bar{X}}_k)=0\) and Eq. (14), for \(k=1, \ldots , n\), we have that

$$\begin{aligned} \sum _{k=1}^n{\widehat{V}} _k(\Delta )&= \sum _{k=1}^n\Big \{ (m+n)\big ({\bar{Y}}{{\widehat{T}}}^{(1)}_n-{\bar{X}}{{\widehat{T}}}^{(2)}_m-{\bar{X}}{\bar{Y}}\cdot \Delta \big )\nonumber \\&\quad -(m+n-1)\big ({\bar{Y}}{{\widehat{T}}}^{(1)}_{n-1,k}-{\bar{X}}_k{{\widehat{T}}}^{(2)}_m-{\bar{X}}_k{\bar{Y}}\cdot \Delta \big ) \Big \} \nonumber \\&= \sum _{k=1}^n \big ({\bar{Y}}{{\widehat{T}}}^{(1)}_n-{\bar{X}}{{\widehat{T}}}^{(2)}_m-{\bar{X}}{\bar{Y}}\cdot \Delta \big )\nonumber \\&\quad +(m+n-1)\sum _{k=1}^n \Big [{\bar{Y}}({{\widehat{T}}}^{(1)}_n-{{\widehat{T}}}^{(1)}_{n-1,k})-({\bar{X}}-{\bar{X}}_k){{\widehat{T}}}^{(2)}_m-({\bar{X}}-{\bar{X}}_k){\bar{Y}}\cdot \Delta \Big ] \nonumber \\&= n\cdot {\widehat{D}}_{m,n}(\Delta ) + (m+n-1)\sum _{k=1}^n \big [{\bar{Y}}({{\widehat{T}}}^{(1)}_n-{{\widehat{T}}}^{(1)}_{n-1,k})\big ] \nonumber \\&=: B_1+B_2. \end{aligned}$$
(39)

Based on Lemma 2, we have

$$\begin{aligned} B_2= & {} (m+n-1){\bar{Y}}\sum _{k=1}^n\left( {{\widehat{T}}}^{(1)}_n-{{\widehat{T}}}^{(1)}_{n-1,k}\right) \\= & {} (m+n-1) O_{p}(1) \cdot O_{p}\left( \frac{1}{nh_1^2 }\right) = O_{p}\left( \frac{1}{h_1^2 }\right) . \end{aligned}$$

Hence,

$$\begin{aligned} \sum _{k=1}^n{\widehat{V}}_k(\Delta )= B_1+B_2= n\cdot {{\widehat{D}}_{m,n}}(\Delta ) +O_{p}\left( \frac{1}{h_1^2 }\right) . \end{aligned}$$

Analogously, we can show that

$$\begin{aligned} \sum _{k=n+1}^{m+n}{\widehat{V}}_k(\Delta )= m\cdot {{\widehat{D}}_{m,n}}(\Delta ) +O_{p}\left( \frac{1}{h_2^2 }\right) . \end{aligned}$$

Now, it follows from conditions (C2), (C3) and Theorem 1 that

$$\begin{aligned} \frac{1}{\sqrt{m+n}}\sum _{k=1}^{m+n}{\widehat{V}} _k(\Delta )= & {} \frac{\sqrt{m+n}}{m+n} \left[ n\cdot {{\widehat{D}}_{m,n}}(\Delta )\right. \\&\quad \left. +O_{p}\left( \frac{1}{h_1^2 }\right) + m\cdot {{\widehat{D}}_{m,n}}(\Delta ) +O_{p}\left( \frac{1}{h_2^2 }\right) \right] \\= & {} \sqrt{m+n}{{\widehat{D}}_{m,n}}(\Delta ) + o_{p}(1) \\&\quad \xrightarrow {d} N(0,\sigma ^2). \end{aligned}$$

Thus, we reach the conclusion. \(\square \)

Lemma 5

Under the conditions (C1), (C3) and (C4), we have

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^n (X_k-\mu _1)\big [{\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\big ] =c_1 + o_{p}(1). \end{aligned}$$

Proof

First, we have the following decomposition

$$\begin{aligned}&\frac{1}{n}\sum _{k=1}^n (X_k-\mu _1)\big [{\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\big ] \\&\quad =\frac{1}{n}\sum _{k=1}^n X_k\big [{\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\big ]-\frac{1}{n}\sum _{k=1}^n \mu _1\big [{\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\big ] \\&\quad =\frac{1}{n}\sum _{k=1}^n X_k{\widehat{V}}^{(1)}_k-\frac{1}{n}\sum _{k=1}^n X_k\int _{{\mathscr {B}}}w(t)\theta _1(t)dt+O_p\left( \frac{1}{\sqrt{n}}\right) \\&\quad =\frac{1}{n}\sum _{k=1}^n X_k{\widehat{V}}^{(1)}_k -\mu _1\int _{{\mathscr {B}}}w(t)\theta _1(t)dt+o_p(1). \end{aligned}$$

Note that

$$\begin{aligned} {\widehat{V}}^{(1)}_k= & {} \sum _{i\ne k} X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt\\&\quad +X_k\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt, \end{aligned}$$

then

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^n X_k{\widehat{V}}^{(1)}_k&=\frac{1}{n}\sum _{k=1}^n X_k\sum _{i\ne k} X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) \right. \\&\left. \quad -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt \\&\quad +\frac{1}{n}\sum _{k=1}^n X_k^2\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt\\&=: I_1+I_2. \end{aligned}$$

From the Taylor expansion (31) of \(K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) -K_1\left( \frac{t-F_n(X_i)}{h_1}\right) \), then

$$\begin{aligned} I_1= & {} \frac{1}{n}\sum _{k=1}^n X_k\sum _{i\ne k} X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt\nonumber \\= & {} \frac{1}{n}\sum _{k=1}^n X_k\sum _{i\ne k} X_i\int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_n(X_i)-F_{n,k}(X_i)}{h_1}dt+o_p(1)\nonumber \\= & {} \frac{1}{n}\sum _{k=1}^n X_k\sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_n(X_i)-F_{n,k}(X_i)}{h_1}dt+o_p(1)\nonumber \\= & {} \sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{1}{n}\sum _{k=1}^n X_k\frac{I(X_k\le X_i)-F_n(X_i)}{(n-1)h_1}dt+o_p(1)\nonumber \\= & {} \sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{\theta _1(F_n(X_i))-\mu _1F_n(X_i)+o_p(1)}{(n-1)h_1}dt+o_p(1)\nonumber \\= & {} \int _{0}^{\infty }x\int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(x)}{h_1}\right) \frac{\theta _1(F_n(x))-\mu _1F_n(x)}{h_1}dtdF_n(x)+o_p(1)\nonumber \\= & {} \int _{{\mathscr {B}}}\int _{-1}^{1}F_n^{-1}(y)w(t) k_1\left( \frac{t-y}{h_1}\right) \frac{\theta _1(y)-\mu _1y}{h_1}dydt+o_p(1)\nonumber \\= & {} \int _{{\mathscr {B}}}\int _{\frac{t-1}{h_1} }^{\frac{t+1}{h_1} } F_n^{-1}(t-uh_1)w(t) k_1(u)[\theta _1(t-uh_1)-\mu _1(t-uh_1)]dudt+o_p(1)\nonumber \\= & {} \int _{{\mathscr {B}}}\int _{-1}^{1}\xi _t w(t) k_1(u)(\theta _1(t)-t\mu _1)dudt+o_p(1)\nonumber \\= & {} \int _{{\mathscr {B}}}w(t)\xi _t(\theta _1(t)-t\mu _1)dt+o_p(1). \end{aligned}$$
(40)

Another part \(I_2\) can be written as

$$\begin{aligned} I_2= & {} \frac{1}{n}\sum _{k=1}^n X_k^2\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt\nonumber \\= & {} \int _{{\mathscr {B}}}w(t)\frac{1}{n}\sum _{k=1}^n X_k^2 [I(F_n(X_k)\le t)+o_p(1)]dt\nonumber \\= & {} \int _{{\mathscr {B}}}w(t)\int _{0}^{\xi _t}x^2dF(x)dt+o_p(1). \end{aligned}$$
(41)

Thus, from Eqs. (40) and (41), we have

$$\begin{aligned}&\frac{1}{n}\sum _{k=1}^n (X_k-\mu _1)\big [{\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\big ]\\&\quad =\int _{{\mathscr {B}}}w(t)\xi _t(\theta _1(t)-t\mu _1)dt+\int _{{\mathscr {B}}}w(t)\int _{0}^{\xi _t}x^2dF(x)dt\\&\qquad -\mu _1\int _{{\mathscr {B}}}w(t)\theta _1(t)dt+o_p(1)\\&=\int _{{\mathscr {B}}}w(t)\Big [\xi _t(\theta _1(t)-t\mu _1)+\int _{0}^{\xi _t}x^2dF(x)-\mu _1\theta _1(t)\Big ]dt+o_p(1)\\&=c_1+o_p(1). \end{aligned}$$

\(\square \)

Lemma 6

Under the conditions (C1), (C3) and (C4), we have

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^n \left[ {\widehat{V}}^{(1)}_k -\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] ^2 \xrightarrow {p} \sigma _1^2,\quad \text{ as } n \rightarrow \infty . \end{aligned}$$

Proof

Applying Lemma 3 yields that

$$\begin{aligned}&\frac{1}{n}\sum _{k=1}^n\left[ {\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] ^2 \nonumber \\&\quad =\frac{1}{n}\sum _{k=1}^n [{\widehat{V}}^{(1)}_k]^2-2\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\cdot \frac{1}{n}\sum _{k=1}^n {\widehat{V}}^{(1)}_k+\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] ^2\nonumber \\&\quad =\frac{1}{n}\sum _{k=1}^n [{\widehat{V}}^{(1)}_k]^2-\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] ^2+ o_{p}(1), \end{aligned}$$
(42)

where

$$\begin{aligned} {\widehat{V}}^{(1)}_k= & {} \sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt\\&\quad +X_k\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt. \end{aligned}$$

We first deal with the term \(\frac{1}{n}\sum _{k=1}^n [{\widehat{V}}^{(1)}_k]^2\), that is,

$$\begin{aligned}&\frac{1}{n}\sum _{k=1}^n [{\widehat{V}}^{(1)}_k]^2\nonumber \\&\quad = \frac{1}{n}\sum _{k=1}^n\left\{ \sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt \right\} ^2 \nonumber \\&\qquad +\frac{1}{n}\sum _{k=1}^nX^2_k\left[ \int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt\right] ^2 \nonumber \\&\qquad +2\frac{1}{n}\sum _{k=1}^nX_k\left[ \int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt\right] \sum _{i=1}^n X_i \int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) \nonumber \right. \\&\left. \qquad -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt \nonumber \\&\quad =: D_1 +D_2+D_3. \end{aligned}$$
(43)

By the Taylor expansion, condition (C3) and Eq. (30), we have

$$\begin{aligned}&D_1 =\frac{1}{n}\sum _{k=1}^n\left\{ \sum _{i=1}^n X_i \int _{{\mathscr {B}}}w(t)\left[ k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_{n,k}(X_i)-F_n(X_i)}{h_1} \right. \right. \\&\left. \left. \qquad - \frac{1}{2}k^{\prime }_1\left( \frac{t-\rho _{n,k,i}}{h_1}\right) \left( \frac{F_{n,k}(X_i)-F_n(X_i)}{h_1} \right) ^2 \right] \right\} ^2dt\\&\quad =\frac{1}{n}\sum _{k=1}^n\left\{ \sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t)\left[ k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_{n,k}(X_i)-F_n(X_i)}{h_1}\right. \right. \\&\left. \left. \qquad +O_p\left( \frac{1}{(nh_1)^2}\right) \right] \right\} ^2dt\\&\quad =\frac{1}{n}\sum _{k=1}^n \left\{ \sum _{i=1}^n X_i \int _{{\mathscr {B}}}w(t)k_1\left( \frac{1-F_n(X_i)}{h_1}\right) \frac{F_{n,k}(X_i)-F_n(X_i)}{h_1}dt\right\} ^2\\&\qquad +O_{p}\left( \frac{1}{nh^3_1}\right) +O_{p}\left( \frac{1}{nh^3_1}\right) +O_{p}\left( \frac{1}{n^2h^4_1 }\right) \\&\quad =\frac{1}{n}\sum _{k=1}^n \left\{ n\int _{0}^{\infty } x\int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(x)}{h_1}\right) \frac{F_{n,k}(x)-F_n(x)}{h_1} dtdF_n(x)\right\} ^2+o_{p}(1), \end{aligned}$$

where \(\rho _{n,k,i}\) is the random variable between \(F_n(X_i)\) and \(F_{n,k}(X_i)\). Moreover, it can be checked that

$$\begin{aligned} D_1= & {} n\sum _{k=1}^n \left\{ \int _{{\mathscr {B}}}\int _{{\mathscr {B}}}\int _{0}^{\infty }\int _{0}^{\infty }w(t_1)w(t_2) x_1x_2 k_1\left( \frac{t_1-F_n(x_1)}{h_1}\right) k_1\left( \frac{t_2-F_n(x_2)}{h_1}\right) \right. \\&\quad \left. \times \frac{F_{n,k}(x_1)-F_n(x_1)}{h_1} \frac{F_{n,k}(x_2)-F_n(x_2)}{h_1} dF_n(x_1) dF_n(x_2)dt_1dt_2\right\} +o_{p}(1) \\= & {} \frac{n}{(n-1)^2 h_1^2 } \left\{ \int _{{\mathscr {B}}}\int _{{\mathscr {B}}}w(t_1)w(t_2)\int _{0}^{\infty }\int _{0}^{\infty } \sum _{k=1}^n[F_n(x_1)F_n(x_2)-I(X_k\le x_1)F_n(x_2)\right. \\&\quad -I(X_k\le x_2)F_n(x_1)+I(X_k\le x_1\wedge x_2)] \\&\quad \left. \times x_1x_2k_1\left( \frac{t_1-F_n(x_1)}{h_1}\right) k_1\left( \frac{t_2-F_n(x_2)}{h_1}\right) dF_n(x_1) dF_n(x_2)dt_1dt_2\right\} +o_{p}(1) \\= & {} \frac{n^2 }{(n-1)^2 h_1^2 } \left\{ \int _{{\mathscr {B}}}\int _{{\mathscr {B}}}w(t_1)w(t_2) \int _{0}^{\infty }\int _{0}^{\infty } [F_n(x_1\wedge x_2)-F_n(x_1)F_n(x_2)] \right. \\&\quad \left. \times x_1x_2k_1\left( \frac{t_1-F_n(x_1)}{h_1}\right) k_1\left( \frac{t_2-F_n(x_2)}{h_1}\right) dF_n(x_1)dF_n(x_2)dt_1dt_2\right\} +o_{p}(1). \end{aligned}$$

Denote \(y_1=F_n(x_1)\), \(y_2=F_n(x_2)\), \(u_1=\frac{t_1-y_1}{h_1}\) and \(u_2=\frac{t_2-y_2}{h_1}\). From conditions (C1)–(C4), we can get

$$\begin{aligned} D_1= & {} \frac{n^2 }{(n-1)^2 h_1^2 } \left\{ \int _{{\mathscr {B}}}\int _{{\mathscr {B}}}w(t_1)w(t_2)\right. \\&\quad \left. \int _{-1}^{1}\int _{-1}^{1}F_n^{-1}(y_1)F_n^{-1}(y_2)k_1\left( \frac{t_1-y_1}{h_1}\right) k_1\left( \frac{t_2-y_2}{h_1}\right) \right. \\&\quad \left. \times (y_1\wedge y_2-y_1y_2) dy_1dy_2dt_1dt_2\right\} +o_{p}(1)\\= & {} \frac{n^2 }{(n-1)^2 } \left\{ \int _{{\mathscr {B}}}\int _{{\mathscr {B}}}w(t_1)w(t_2)\right. \\&\quad \left. \int _{0}^{\infty }\int _{0}^{\infty }F_n^{-1}(t_1-u_1h_1)F_n^{-1}(t_2-u_2h_1)k_1(u_1) k_1(u_2)\right. \\&\quad \left. \times [(t_1-u_1h_1)\wedge (t_2-u_2h_1)-(t_1-u_1h_1)(t_2-u_2h_1)] du_1du_2dt_1dt_2\right\} +o_{p}(1)\\= & {} \int _{{\mathscr {B}}}\int _{{\mathscr {B}}}w(t_1)w(t_2)\int _{-1}^{1}\int _{-1}^{1}\xi _{t_1}\xi _{t_2}k_1(u_1) k_1(u_2)\\&\quad \cdot ( t_1\wedge t_2-t_1\cdot t_2) du_1du_2dt_1dt_2 +o_{p}(1)\\= & {} \int _{{\mathscr {B}}}\int _{{\mathscr {B}}}w(t_1)w(t_2)\xi _{t_1}\xi _{t_2}\cdot \left[ \int _{0}^{\infty }I(F(x)\le t_1)I(F(x)\le t_2)dF(x)\right] dt_1dt_2\\&\quad -\Big [\int _{{\mathscr {B}}}w(t_1)\xi _{t_1}t_1 dt_1\Big ]\cdot \Big [\int _{{\mathscr {B}}}w(t_2)\xi _{t_2}t_2dt_2\Big ] +o_{p}(1)\\= & {} \int _{0}^{\infty }\Big [\int _{{\mathscr {B}}}w(t)\xi _{t}I(x\le \xi _t)dt\Big ]^2dF(x)-\Big [\int _{{\mathscr {B}}}w(t)t\xi _t dt\Big ]^2 +o_{p}(1). \end{aligned}$$

As \(n\rightarrow \infty \), \(\sqrt{n}[ F_n(x)-F(x) ] \xrightarrow {d} B(x)\), where B(x) is a Gaussian process, applying the Taylor expansion again, we have

$$\begin{aligned}&K_1\left( \frac{t-F(X_k)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) \\&\quad = k_1\left( \frac{t-F(X_k)}{h_1}\right) \frac{F_{n,k}(X_k)-F(X_k)}{h_1}\\&\qquad - \frac{1}{2}w^{\prime }_1\left( \frac{t-\rho '_{n,k}}{h_1}\right) \left\{ \frac{F_{n,k}(X_k)-F(X_k)}{h_1}\right\} ^2 \\&\quad = O_{p}\left( \frac{1}{\sqrt{n}h_1}\right) , \end{aligned}$$

where \(\rho '_{n,k}\) is a random variable between \(F(X_k)\) and \(F_{n,k}(X_k)\). Recalling (37) in Theorem 1, we obtain

$$\begin{aligned} D_2= & {} \frac{1}{n}\sum _{k=1}^nX^2_k\left[ \int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt\right] ^2 \\= & {} \frac{1}{n}\sum _{k=1}^nX^2_k\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) \right. \\&\quad \left. -K_1\left( \frac{t-F(X_k)}{h_1}\right) \right] dt \\&\quad +\frac{1}{n}\sum _{k=1}^nX^2_k\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) \right. \\&\quad \left. -K_1\left( \frac{t-F(X_k)}{h_1}\right) \right] dt\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F(X_k)}{h_1}\right) dt \\&\quad + \frac{1}{n}\sum _{k=1}^nX^2_k \left[ \int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F(X_k)}{h_1}\right) dt\right] ^2 \\= & {} \frac{1}{n}\sum _{k=1}^nX^2_k \left[ \int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F(X_k)}{h_1}\right) dt\right] ^2 + o_{p}(1) \\= & {} \int _{0}^{\infty }\left[ x\int _{{\mathscr {B}}}w(t)I(x\le \xi _t)dt\right] ^2dF(x) + o_{p}(1). \end{aligned}$$

Thirdly,

$$\begin{aligned} D_3= & {} \frac{2}{n}\sum _{k=1}^nX_k\left[ \int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) dt\right] \sum _{i=1}^n X_i \int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) \nonumber \right. \\&\quad \left. -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt \nonumber \\= & {} \frac{2}{n}\sum _{k=1}^nX_k\left[ \int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt\right] \sum _{i=1}^n X_i \int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) \nonumber \right. \\&\quad \left. -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt \nonumber \\&\quad +\frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) -K_1\left( \frac{t-F_n(X_k)}{h_1}\right) \right] dt \nonumber \\&\quad \times \sum _{i=1}^n X_i \int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt \nonumber \\=: & {} D_{31}+D_{32}. \end{aligned}$$
(44)

By Eq. (30) and the Taylor expansion, we have

$$\begin{aligned} D_{31}&=\frac{2}{n}\sum _{k=1}^nX_k\left[ \int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt\right] \sum _{i=1}^n X_i \int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) \nonumber \right. \\&\left. \quad -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt \nonumber \\&=\frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t) K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt\sum _{i=1}^n X_i\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t)\left\{ k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_{n,k}(X_i)-F_n(X_i)}{h_1} \right. \nonumber \\&\left. \quad - \frac{1}{2}k^{\prime }_1\left( \frac{t-\rho _{n,k,i}}{h_1}\right) \left( \frac{F_{n,k}(X_i)-F_n(X_i)}{h_1} \right) ^2 \right\} dt\nonumber \\&=\frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt \sum _{i=1}^n X_i\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_n(X_i)-I (X_k\le X_i )}{(n-1)h_1}dt +O_{p}\left( \frac{1}{n h_1^2 }\right) \nonumber \\&= \frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt \sum _{i=1}^n X_i\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_n(X_i)}{(n-1)h_1}dt\nonumber \\&\quad -\frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt \sum _{i=1}^n X_i\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{I(X_k\le X_i )}{(n-1)h_1}dt+O_{p}\left( \frac{1}{nh_1^2 }\right) \nonumber \\&=: E_1+E_2+O_{p}\left( \frac{1}{nh_1^2 }\right) , \end{aligned}$$
(45)

where \(\rho _{n,k,i}\) is a random variable between \(F_n(X_i)\) and \(F_{n,k}(X_i)\). By conditions (C1), (C3) and Lemma 1, it can be verified that

$$\begin{aligned} E_1= & {} \frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt \sum _{i=1}^n X_i\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t) k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_n(X_i)}{(n-1)h_1}dt \nonumber \\= & {} \frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t)K_1\left( \frac{t-F_n(X_k)}{h_1}\right) dt \left\{ n\int _{-\infty }^{\infty }\nonumber \right. \\&\quad \left. \times \int _{{\mathscr {B}}}w(t)xk_1\left( \frac{t-F_n(x)}{h_1}\right) \frac{F_n(x)}{(n-1)h_1}dt dF_n(x) \right\} \nonumber \\= & {} \frac{2}{n-1}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t)K_1\left( \frac{1-F_n(X_k)}{h_1}\right) dt\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t)\int _{-1}^{1} F^{-1}_n(y)k_1\left( \frac{t-y}{h_1}\right) \frac{y}{h_1} dydt \nonumber \\= & {} 2\left\{ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt+O_{p}\left( \frac{1}{\sqrt{n}}\right) \right\} \nonumber \\&\quad \times \left\{ \int _{{\mathscr {B}}}w(t) \int _{\frac{t-1}{h_1} }^{\frac{t+1}{h_1} } F^{-1}_n(t-h_1z)k_1(z)(t-h_1z) dz dt\right\} \nonumber \\= & {} 2\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\int _{{\mathscr {B}}}w(t) t\xi _t dt +O_{p}\left( \frac{1}{\sqrt{n}}\right) , \end{aligned}$$
(46)

and

$$\begin{aligned} E_2&= -\frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t_1)K_1\left( \frac{t_1-F_n(X_k)}{h_1}\right) dt_1 \sum _{i=1}^n X_i\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t_2) k_1\left( \frac{t_2-F_n(X_i)}{h_1}\right) \frac{I(X_k\le X_i )}{(n-1)h_1}dt_2\nonumber \\&=-\frac{2}{n-1}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t_1) K_1\left( \frac{t_1-F_n(X_k)}{h_1}\right) dt_1 \int _{-\infty }^{\infty } x\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t_2)k_1\left( \frac{t_2-F_n(x)}{h_1}\right) \frac{I(X_k\le x )}{h_1} dt_2dF_n(x) \nonumber \\&=-\frac{2}{n-1}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t_1)I(X_k\le \xi _t)dt_1\nonumber \\&\quad \times \int _{{\mathscr {B}}}w(t_2)\int _{\frac{t_2-1}{h_1}}^{\frac{t_2+1}{h_1}} F_n^{-1}(t_2-uh_1)k_1(u)I(X_k\le t_2-uh_1 ) dudt_2 +o_p(1)\nonumber \\&=-2\int _{0}^{\infty }x\left[ \int _{{\mathscr {B}}}w(t_1)I(x\le \xi _t)dt_1\right] \left[ \int _{{\mathscr {B}}}w(t_2)\xi _{t_2}I(x\le t_2 )dt_2\right] dF(x)+o_p(1). \end{aligned}$$
(47)

Recalling (30), we also have that

$$\begin{aligned}&D_{32}=\frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_{n,k}(X_k)}{h_1}\right) -K_1\left( \frac{t-F_n(X_k)}{h_1}\right) \right] dt \nonumber \\&\qquad \times \sum _{i=1}^n X_i \int _{{\mathscr {B}}}w(t)\left[ K_1\left( \frac{t-F_n(X_i)}{h_1}\right) -K_1\left( \frac{t-F_{n,k}(X_i)}{h_1}\right) \right] dt \nonumber \\&\quad =-\frac{2}{n}\sum _{k=1}^nX_k\int _{{\mathscr {B}}}w(t) \left\{ k_1\left( \frac{t-F_n(X_k)}{h_1}\right) \frac{F_{n,k}(X_k)-F_n(X_k)}{h_1}\nonumber \right. \\&\left. \qquad - \frac{1}{2}k^{\prime }_1\left( \frac{t-\rho _{n,k}}{h_1}\right) \left( \frac{F_{n,k}(X_k)-F_n(X_k)}{h_1} \right) ^2 \right\} dt \nonumber \\&\qquad \times \sum _{i=1}^n X_i\int _{{\mathscr {B}}}w(t) \left\{ k_1\left( \frac{t-F_n(X_i)}{h_1}\right) \frac{F_{n,k}(X_i)-F_n(X_i)}{h_1}\nonumber \right. \\&\left. \qquad - \frac{1}{2}k^{\prime }_1\left( \frac{t-\rho _{n,k,i}}{h_1}\right) \left( \frac{F_{n,k}(X_i)-F_n(X_i)}{h_1} \right) ^2 \right\} dt\nonumber \\&\quad = \frac{2}{n} nO_{p}\left( \frac{1}{nh_1}\right) nO_{p}\left( \frac{1}{nh_1}\right) = O_{p} \left( \frac{1}{nh_1^2 } \right) , \end{aligned}$$
(48)

where \(\rho _{n,k}\) is a random variable between \(F_n(X_k)\) and \(F_{n,k}(X_k)\). Now using condition (C3), together with Eqs. (44)–(48) yields that

$$\begin{aligned} D_3= & {} 2\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\int _{{\mathscr {B}}}w(t) t\xi _t dt \\&\quad -2\int _{0}^{\infty }x\left[ \int _{{\mathscr {B}}}w(t_1)I(x\le \xi _t)dt_1\right] \left[ \int _{{\mathscr {B}}}w(t_2)\xi _{t_2}I(x\le t_2 )dt_2\right] dF(x)+o_p(1). \end{aligned}$$

Finally, we combine the above component-wise results to achieve the following asymptotic result,

$$\begin{aligned}&\frac{1}{n}\sum _{k=1}^n\left[ {\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] ^2 \\&\quad = \sum _{i=1}^3 D_i-\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] ^2+o_{p}(1)\\&\quad = \int _{0}^{\infty }\Bigg [\int _{{\mathscr {B}}}w(t)\xi _{t}I(x\le \xi _t)dt\Bigg ]^2dF(x)-\Bigg [\int _{{\mathscr {B}}}w(t)t\xi _t dt\Bigg ]^2+o_{p}(1) \\&\qquad +\int _{0}^{\infty }\Bigg [x\int _{{\mathscr {B}}}w(t)I(x\le \xi _t)dt\Bigg ]^2dF(x) + o_{p}(1)\\&\qquad +2\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\int _{{\mathscr {B}}}w(t) t\xi _t dt \\&\qquad -2\int _{0}^{\infty }x\Bigg [\int _{{\mathscr {B}}}w(t_1)I(x\le \xi _t)dt_1\Bigg ]\Bigg [\int _{{\mathscr {B}}}w(t_2)\xi _{t_2}I(x\le t_2 )dt_2\Bigg ]dF(x)+o_p(1)\\&\qquad -\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] ^2+o_{p}(1)\\&\quad =\int _{0}^{\infty }\Bigg [\int _{{\mathscr {B}}}w(t)(x-\xi _t)I(x\le \xi _t)dt\Bigg ]^2 dF(x)\\&\qquad -\Bigg [\int _{{\mathscr {B}}}w(t)(\theta _1(t)-t\xi _t)dt\Bigg ]^2+o_p(1)\\&\quad = \sigma _1^2+o_p(1). \end{aligned}$$

This completes the proof of Lemma 6. \(\square \)

Lemma 7

Under the conditions (C1)–(C4), we have

$$\begin{aligned} \frac{1}{m+n}\sum _{k=1}^{m+n} \left[ {\widehat{V}} _k(\Delta ) \right] ^2 \xrightarrow {p} \sigma ^2,\quad \text{ as } n\rightarrow \infty . \end{aligned}$$

Proof

Noting that the symmetries of \({\widehat{V}}_k(\Delta )\)’s by Eq. (13), for \(1\le k \le n\), we can write

$$\begin{aligned}&{\widehat{V}} _k(\Delta )= (m+n)\big ({\bar{Y}}{{\widehat{T}}}^{(1)}_n-{\bar{X}}{{\widehat{T}}}^{(2)}_m-{\bar{X}}{\bar{Y}}\cdot \Delta \big )\nonumber \\&\qquad -(m+n-1)\big ({\bar{Y}}{{\widehat{T}}}^{(1)}_{n-1,k}-{\bar{X}}_k{{\widehat{T}}}^{(2)}_m-{\bar{X}}_k{\bar{Y}}\cdot \Delta \big ) \nonumber \\&\quad =\left( \frac{n(m+n-1)}{n-1}-\frac{m}{n-1}\right) \big ({\bar{Y}}{{\widehat{T}}}^{(1)}_n-{\bar{X}}{{\widehat{T}}}^{(2)}_m-{\bar{X}}{\bar{Y}}\cdot \Delta \big )\nonumber \\&\qquad -(m+n-1)\big ({\bar{Y}}{{\widehat{T}}}^{(1)}_{n-1,k}-{\bar{X}}_k{{\widehat{T}}}^{(2)}_m-{\bar{X}}_k{\bar{Y}}\cdot \Delta \big ) \nonumber \\&\quad =\frac{m+n-1}{n-1}\Big [n\big ({\bar{Y}}{{\widehat{T}}}^{(1)}_n-{\bar{X}}{{\widehat{T}}}^{(2)}_m-{\bar{X}}{\bar{Y}}\cdot \Delta \big )\nonumber \\&\qquad -(n-1)\big ({\bar{Y}}{{\widehat{T}}}^{(1)}_{n-1,k}-{\bar{X}}_k{{\widehat{T}}}^{(2)}_m-{\bar{X}}_k{\bar{Y}}\cdot \Delta \big )\Big ] \nonumber \\&\qquad -\frac{m}{n-1}\big ({\bar{Y}}{{\widehat{T}}}^{(1)}_n-{\bar{X}}{{\widehat{T}}}^{(2)}_m-{\bar{X}}{\bar{Y}}\cdot \Delta \big ) \nonumber \\&\quad = \frac{m+n-1}{n-1}\left\{ {\bar{Y}}{\widehat{V}}^{(1)}_k -X_k({{\widehat{T}}}^{(2)}_m+{\bar{Y}}\Delta )\right\} -\frac{m}{n-1}{\widehat{D}}_{m,n}(\Delta ) \nonumber \\&\quad = \frac{m+n-1}{n-1}\Big \{{\bar{Y}}\big [{\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\big ] -(X_k-\mu _1)({{\widehat{T}}}^{(2)}_m+{\bar{Y}}\Delta )\Big \} \nonumber \\&\qquad +\frac{m+n-1}{n-1}\Big \{{\bar{Y}}\int _{{\mathscr {B}}}w(t)\theta _1(t)dt -\mu _1({{\widehat{T}}}^{(2)}_m+{\bar{Y}}\Delta )\Big \} -\frac{m}{n-1}{\widehat{D}}_{m,n}(\Delta ) \nonumber \\&\quad =: H_1+H_2. \end{aligned}$$
(49)

Thus,

$$\begin{aligned} \frac{1}{m+n}\sum _{k=1}^n \left[ {\widehat{V}} _k(\Delta ) \right] ^2 =\frac{1}{m+n}\sum _{k=1}^n ( H_1+H_2 )^2. \end{aligned}$$

Recalling Eq. (8), it holds that

$$\begin{aligned} H_2= & {} \frac{m+n-1}{n-1}\Big \{{\bar{Y}}\int _{{\mathscr {B}}}w(t)\theta _1(t)dt -\mu _1({{\widehat{T}}}^{(2)}_m+{\bar{Y}}\Delta )\Big \} -\frac{m}{n-1}{\widehat{D}}_{m,n}(\Delta )\\= & {} \frac{m+n-1}{n-1}\Big \{({\bar{Y}}-\mu _2)\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\mu _1\Delta \right] \\&\quad -\mu _1\left[ {{\widehat{T}}}^{(2)}_m-\int _{{\mathscr {B}}}w(t)\theta _2(t)dt\right] \Big \} \\&\quad +\frac{m+n-1}{n-1}\Big \{\mu _2\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\mu _1\Delta \right] -\mu _1\int _{{\mathscr {B}}}w(t)\theta _2(t)dt\Big \}\\&\quad -\frac{m}{n-1}{\widehat{D}}_{m,n}(\Delta )\\= & {} \frac{m+n-1}{n-1}\left\{ ({\bar{Y}}-\mu _2)\left[ \int _{{\mathscr {B}}}w(t)\theta _1(t)dt-\mu _1\Delta \right] \right. \\&\quad \left. -\mu _1\left[ {{\widehat{T}}}^{(2)}_m-\int _{{\mathscr {B}}}w(t)\theta _2(t)dt\right] \right\} \\&\quad -\frac{m}{n-1}{\widehat{D}}_{m,n}(\Delta ). \end{aligned}$$

Now, Lemma 1 in conjunction with Theorem 1 imply that

$$\begin{aligned} {{\widehat{T}}}^{(2)}_m-\int _{{\mathscr {B}}}w(t)\theta _2(t)dt=O_{p}\left( \frac{1}{{\sqrt{m}}}\right) ,\quad {\widehat{D}}_{m,n}(\Delta )=O_{p}\left( \frac{1}{m+n}\right) . \end{aligned}$$

By Eq. (49), we can easily find \(H_2\) is not involved with k. Then

$$\begin{aligned} H_2=O_{p}\left( \frac{1}{\sqrt{m+n}}\right) ,\quad \frac{1}{m+n}\sum _{k=1}^n H_2^2 =\frac{n}{m+n} H_2^2 =O_{p}\left( \frac{1}{m+n}\right) =o_{p}(1). \end{aligned}$$

Applying Lemma 3 yields that \(\frac{1}{n}\sum _{k=1}^n{\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt =O_{p}\left( \frac{1}{{\sqrt{n}}}\right) \), which in turn implies that \(\frac{1}{m+n}\sum _{k=1}^n H_1=O_{p}\left( \frac{1}{{\sqrt{m+n}}}\right) \). Notice that \(H_2\) is not involved with k, we then have

$$\begin{aligned} \frac{1}{m+n}\sum _{k=1}^n H_1H_2=H_2\left( \frac{1}{m+n}\sum _{k=1}^n H_1 \right) =O_{p}\left( \frac{1}{m+n}\right) =o_{p}(1). \end{aligned}$$

Applying Lemmas 5 and 6, we have that

$$\begin{aligned}&\frac{1}{m+n}\sum _{k=1}^n H_1^2 \\&\quad =\frac{(m+n-1)^2 }{(n-1)^2(n+m) }\sum _{k=1}^n \left\{ {\bar{Y}}\left[ {\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] -(X_k-\mu _1)({{\widehat{T}}}^{(2)}_m+{\bar{Y}}\Delta ) \right\} ^2 \\&\quad =\frac{n(m+n-1)^2 }{(n-1)^2 (m+n)}{\bar{Y}}^2 \frac{1}{n}\sum _{k=1}^n \left[ {\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] ^2 \\&\qquad -2\frac{n(m+n-1)^2 }{(n-1)^2 (m+n)}{\bar{Y}}({{\widehat{T}}}^{(2)}_m+{\bar{Y}}\Delta )\frac{1}{n}\sum _{k=1}^n (X_k-\mu _1)\left[ {\widehat{V}}^{(1)}_k-\int _{{\mathscr {B}}}w(t)\theta _1(t)dt\right] \\&\qquad + \frac{n(m+n-1)^2 }{(n-1)^2 (m+n)} ({{\widehat{T}}}^{(2)}_m+{\bar{Y}}\Delta )^2 \cdot \frac{1}{n}\sum _{k=1}^n(X_k-\mu _1)^2 \\&\quad =(1+c^{-1})\mu _2^2\sigma _1^2+(1+c^{-1})\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\mu _2\Delta \right) ^2\cdot \text{ var }(X) \\&\qquad -2(1+c^{-1})\mu _2\left( \int _{{\mathscr {B}}}w(t)\theta _2(t)dt+\mu _2\Delta \right) c_1 +o_{p}(1)\\&\quad =(1+c^{-1})\sigma _{11}^2+o_p(1). \end{aligned}$$

Then,

$$\begin{aligned} \frac{1}{m+n}\sum _{k=1}^n \left[ {\widehat{V}} _k(\Delta ) \right] ^2= & {} \frac{1}{m+n}\sum _{k=1}^n H_1^2 +2\frac{1}{m+n}\sum _{k=1}^n H_1H_2+\frac{1}{m+n}\sum _{k=1}^n H_2^2 \\= & {} (1+c^{-1})\sigma _{11}^2+o_p(1). \end{aligned}$$

Similarly, for \(k \in \{n+1,\,n+2,\ldots ,m+n \} \), we can easily obtain

$$\begin{aligned} \frac{1}{m+n}\sum _{k=n+1}^{m+n} \left[ {\widehat{V}} _k(\Delta ) \right] ^2=(c+1)\sigma _{22}^2 +o_{p}(1). \end{aligned}$$

Therefore, by the above arguments, we have

$$\begin{aligned} \frac{1}{m+n}\sum _{k=1}^{m+n} \left[ {\widehat{V}} _k(\Delta ) \right] ^2 =(1+c^{-1})\sigma _{11}^2+(1+c)\sigma _{22}^2+o_p(1) \xrightarrow {p} \sigma ^2. \end{aligned}$$

This completes the proof. \(\square \)

Proof of Theorem 2

The proof follows directly from Lemmas 4 and 7. \(\square \)

Proof of Theorem 3

Define

$$\begin{aligned} g(\lambda )= \frac{1}{m+n} \sum _{i=1}^{m+n}\frac{{\widehat{V}}_i(\Delta ) }{ 1+\lambda {\widehat{V}}_i(\Delta ) }, \end{aligned}$$

it is easy to check that

$$\begin{aligned} 0=|g(\lambda )|= & {} \frac{1}{m+n}\left| \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta ) -\lambda \sum _{i=1}^{m+n}\frac{{\widehat{V}}_i^2(\Delta ) }{ 1+\lambda {\widehat{V}}_i(\Delta ) }\right| \\\ge & {} \frac{1}{m+n}\left| \lambda \sum _{i=1}^{m+n}\frac{{\widehat{V}}_i^2(\Delta ) }{ 1+\lambda {\widehat{V}}_i(\Delta ) }\right| -\frac{1}{m+n}\left| \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta ) \right| \\\ge & {} \frac{|\lambda |S_{m+n}}{1+|\lambda |Z_{m+n}}-\frac{1}{m+n}\left| \sum _{i=1}^{m+n}{\widehat{V}}_i(\Delta ) \right| , \end{aligned}$$

where \(S_{m+n}=\frac{1}{m+n} \sum _{i=1}^{m+n} \left[ {\widehat{V}}_i(\Delta ) \right] ^2 \), \(Z_{m+n}=\underset{1 \le i \le m+n}{\max }| {\widehat{V}}_i(\Delta )| \). By Lemmas 3 and 6, we obtain \(|\lambda |=O_{p}\left( \frac{1}{\sqrt{m+n}}\right) \). Denote \(\gamma _i=\lambda {\widehat{V}}_i(\Delta ) \), then \(\underset{1 \le i \le m+n}{\max } |\gamma _i|= o_{p}(1)\). Using the above equations and the Taylor expansion, we have

$$\begin{aligned} 0=g(\lambda )= & {} \frac{1}{m+n} \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta ) \left( 1-\gamma _i+\frac{\gamma _i^2 }{1+\gamma _i}\right) \\= & {} \frac{1}{m+n} \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta ) -S_{m+n}\lambda + \frac{1}{m+n} \sum _{i=1}^{m+n} \frac{{\widehat{V}}_i(\Delta ) \gamma _i^2 }{1+\gamma _i}\\= & {} \frac{1}{m+n} \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta ) -S_{m+n}\lambda + o_{p}\left( \frac{1}{\sqrt{m+n}}\right) , \end{aligned}$$

which implies that

$$\begin{aligned} \lambda = S_{m+n}^{-1}\frac{1}{m+n} \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta ) + \beta _n, \end{aligned}$$

where \(\beta _n=o_{p}\left( \frac{1}{\sqrt{m+n}}\right) \), hence

$$\begin{aligned} l_{m,n}(\Delta )= & {} 2\sum _{i=1}^{m+n} \log \left\{ 1+\lambda {\widehat{V}}_i(\Delta ) \right\} \\= & {} 2\sum _{i=1}^{m+n} \gamma _i-\sum _{i=1}^{m+n} \gamma _i^2 +O_{p}(\gamma _i^3) \\= & {} 2 (m+n)\lambda \frac{1}{m+n} \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta )-(m+n)S_{m+n}\lambda ^2 +o_{p}(1)\\= & {} 2 (m+n)\left[ S_{m+n}^{-1}\frac{1}{m+n} \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta ) + \beta _n\right] \frac{1}{m+n} \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta )\\&\quad -(m+n)S_{m+n}\left[ S_{m+n}^{-1}\frac{1}{m+n} \sum _{i=1}^{m+n} {\widehat{V}}_i(\Delta ) + \beta _n\right] ^2 +o_{p}(1)\\= & {} \frac{(m+n)\left\{ \frac{1}{m+n} \sum _{i=1}^{m+n}{\widehat{V}}_i(\Delta ) \right\} ^2 }{S_{m+n}}-(m+n)S_{m+n}\beta _n^2 +o_{p}(1)\\= & {} \frac{(m+n)\left\{ \frac{1}{m+n} \sum _{i=1}^{m+n}{\widehat{V}}_i(\Delta ) \right\} ^2 }{S_{m+n}}+o_{p}(1)\\&\quad \xrightarrow {d} \chi ^2_1. \end{aligned}$$

The proof of Theorem 3 is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Li, Z. & Dai, Y. Unified smoothed jackknife empirical likelihood tests for comparing income inequality indices. Stat Papers 63, 1415–1475 (2022). https://doi.org/10.1007/s00362-021-01281-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-021-01281-w

Keywords

Navigation