Skip to main content
Log in

Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper is aimed to present a robust extension of the classical Rao test statistic, in the context of composite likelihood ideas and methods. The Rao-type test statistics are defined on the basis of the composite minimum power divergence estimators instead of the composite maximum likelihood estimator. These Rao-type test statistics are used to test simple and composite null hypotheses. Their performance is evaluated in terms of a simulation study which concentrates to the robustness and the comparison of the Rao-type tests with the respective Wald-type tests considered in Castilla et al. (Entropy 20:18, 2018). The proposed here procedures are developed on the basis of the restricted composite minimum density power divergence estimators which are also discussed for the sake of completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Basu A, Harris IR, Hjort NL, Jones MC (1998) Robust and efficient estimation by minimizing a density power divergence. Biometrika 85:549–559

    Article  MathSciNet  Google Scholar 

  • Basu A, Shioya H, Park C (2011) Statistical inference. The minimum distance approach. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Basu A, Ghosh A, Martin N, Pardo L (2018) A robust generalization of Rao’s score tests. Sankhya B 80:222–262

    Article  MathSciNet  Google Scholar 

  • Castilla E, Martin N, Pardo L, Zografos K (2018) Composite likelihood methods based on minimum density power divergence estimator. Entropy 20:18. https://doi.org/10.3390/e20010018

    Article  MathSciNet  Google Scholar 

  • Gao X, Song P (2010) Composite likelihood Bayesian information criteria for model selection in high-dimensional data. J Am Stat Assoc 105:1531–1540

    Article  MathSciNet  Google Scholar 

  • Ghosh A, Basu A (2013) Robust estimation for independent non-homogeneous observations using power density divergence with applications to linear regression. Electron J Stat 7:240–2456

    Article  Google Scholar 

  • Ghosh A, Basu A (2015) Robust estimation for nonhomogeneous data and the selection of the optimal tuning parameter: the density power divergence approach. J Appl Stat 42:2056–2072

    Article  MathSciNet  Google Scholar 

  • Joe H, Reid N, Somg PX, Firth D, Varin C (2012) Composite likelihood methods. Report on the workshop on composite likelihood. http://www.birs.ca/events/2012/5-day-workshops/12w5046

  • Kullback S (1959) Information theory and statistics. Wiley, New York

    MATH  Google Scholar 

  • Martín N, Pardo L, Zografos K (2018) On divergence tests for composite hypotheses under composite likelihood. Stat Pap. https://doi.org/10.1007/s00362-017-0900-1

  • Pace L, Salvan A, Sartori N (2011) Adjusting composite likelihood ratio statistics. Stat Sin 21:129–148

    MathSciNet  MATH  Google Scholar 

  • Pardo L (2006) Statistical inference based on divergence measures. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Read TRC, Cressie N (1988) Goodness-of-fit statistics for discrete multivariate data. Springer, New York

    Book  Google Scholar 

  • Reid N (2013) Aspects of likelihood inference. Bernoulli 19:1404–1418

    Article  MathSciNet  Google Scholar 

  • Sen PK, Singer JM (1993) Large sample methods in statistics. An introduction with applications. Chapman & Hall, New York, London

    Book  Google Scholar 

  • Varin C, Vidoni P (2005) A note on composite likelihood inference and model selection. Biometrika 92(3):519–528

    Article  MathSciNet  Google Scholar 

  • Varin C, Reid N, Firth D (2011) An overview of composite likelihood methods. Stat Sin 21:5–42

    MathSciNet  MATH  Google Scholar 

  • Warwick J, Jones MC (2005) Choosing a robustness tuning parameter. J Stat Comput Simul 75:581–588

    Article  MathSciNet  Google Scholar 

  • Xu X, Reid N (2011) On the robustness of maximum composite estimate. J Stat Plan Inference 141:3047–3054

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their helpful comments and suggestions. Their comments have improved the paper. This research is supported by Grants MTM2015-67057-P, and FPU16/03104 from Ministerio de Economia y Competitividad and Ministerio de Educacion, Cultura y Deporte (Spain)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Castilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of results

This Subappendix provides a sketch of the proofs of the theoretical derivations of the previous sections.

1.1.1 Proof of Theorem 2

By definition, the estimator \(\widetilde{\varvec{\theta }}_{c}^{\beta }\) , of (14), is obtained by the solution of the system of equations

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}}_{i}, \varvec{\theta })+{\varvec{M}}(\varvec{\theta })\varvec{\lambda }= & {} {\mathbf {0}}_{r} \nonumber \\ {\varvec{m}}(\varvec{\theta })= & {} {\mathbf {0}}_{r}, \end{aligned}$$
(48)

where \(\varPsi _{\beta }({\varvec{Y}}_{i},\varvec{\theta })\) is defined by (12) and \(\varvec{\lambda }\) is a vector of Lagrange multipliers, with \(\varvec{\lambda }\in {\mathbb {R}}^{r}\).

The aim now is to derive the asymptotic distribution of the RCMDPDE \( \widetilde{\varvec{\theta }}_{c}^{\beta }\). To proceed in such a direction, let \(\varvec{\theta }_{0}\in \varTheta \). Consider the Taylor expansion of \(\frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}}_{i},\widetilde{\varvec{\theta }}_{c}^{\beta }\right) \) around the point \(\varvec{\theta }_{0}\). It gives,

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}}_{i}, \widetilde{\varvec{\theta }}_{c}^{\beta }\right)&=\frac{1}{n} \sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}}_{i},\varvec{\theta } _{0})+\frac{1}{n}\left( \frac{\partial }{\partial \varvec{\theta }^{T}} \sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}}_{i},\varvec{\theta } _{0})\right) \left( \widetilde{\varvec{\theta }}_{c}^{\beta }- \varvec{\theta }_{0}\right) \\&\quad +o\left( \left\| \widetilde{{\varvec{\theta }}}_{c}^{\beta }-\varvec{\theta }_{0}\right\| ^{2}\right) , \end{aligned}$$

or

$$\begin{aligned} \sqrt{n}\frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}} _{i},\widetilde{\varvec{\theta }}_{c}^{\beta }\right)= & {} \sqrt{n}\frac{1 }{n}\sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}}_{i},{\varvec{\theta }}_{0})\\&+\,\sqrt{n}\frac{1}{n}\left( \frac{\partial }{\partial \varvec{\theta }^{T}}\sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}} _{i},\varvec{\theta }_{0})\right) \left( \widetilde{\varvec{\theta }} _{c}^{\beta }-\varvec{\theta }_{0}\right) \\&+\,\sqrt{n}o\left( \left\| \widetilde{\varvec{\theta }}_{c}^{\beta }- \varvec{\theta }_{0}\right\| ^{2}\right) . \end{aligned}$$

Now, we are going to study the convergence in probability of the term \(\frac{ 1}{n}\frac{\partial }{\partial \varvec{\theta }}\sum _{i=1}^{n} \varPsi _{\beta }({\varvec{Y}}_{i},\varvec{\theta }_{0})\). Taking into account that

$$\begin{aligned} {\varvec{u}}(\varvec{\theta },{\varvec{Y}}_{i})=\frac{\partial c\ell (\varvec{\theta },{\varvec{Y}}_{i})}{\partial \varvec{\theta }}= \frac{\partial }{\partial \varvec{\theta }}\log {{\mathcal {C}}}{{\mathcal {L}}}({\varvec{\theta }},{\varvec{Y}}_{i}), \end{aligned}$$

straightforward algebraic manipulations entail that,

$$\begin{aligned}&\frac{1}{n}\frac{\partial }{\partial \varvec{\theta }} \sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}}_{i},\varvec{\theta } _{0}) \\&\quad =\frac{1}{n}\frac{\partial }{\partial \varvec{\theta }}\left\{ \sum _{i=1}^{n}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }, {\varvec{Y}}_{\varvec{i}})^{\beta }{\varvec{u}}(\varvec{\theta }, {\varvec{Y}}_{\varvec{i}})-n\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta },{\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{1+\beta }d{\varvec{y}}\right\} \\&\quad =\frac{\beta }{n}\sum _{i=1}^{n}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }, \varvec{{\varvec{Y}}_{i}})^{\beta }{\varvec{u}}(\varvec{\theta }, \varvec{{\varvec{Y}}_{i}}){\varvec{u}}(\varvec{\theta }, \varvec{{\varvec{Y}}_{i}})^{T}\\&\qquad +\,\frac{1}{n}\sum _{i=1}^{n} {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },\varvec{{\varvec{Y}}_{i}})^{\beta } \frac{\partial }{\partial \varvec{\theta }^{T}}{\varvec{u}}( \varvec{\theta },\varvec{{\varvec{Y}}_{i}}) \\&\qquad -\,\int _{{\mathbb {R}}^{m}}\frac{\partial }{\partial \varvec{\theta }^{T}} {\varvec{u}}(\varvec{\theta },{\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}({\varvec{\theta }},{\varvec{y}})^{1+\beta }d{\varvec{y}} \\&\qquad -\,(1+\beta )\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}}){\varvec{u}}(\varvec{\theta },{\varvec{y}})^{T} {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}}\varvec{)} ^{1+\beta }d{\varvec{y}}. \end{aligned}$$

If \(n\rightarrow \infty \), the above expression leads,

$$\begin{aligned} \frac{1}{n}\frac{\partial }{\partial \varvec{\theta }} \sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}}_{i},\varvec{\theta } _{0})&\underset{n\rightarrow \infty }{\overset{\textit{P}}{ \longrightarrow }}\beta \int _{{\mathbb {R}}^{m}}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}}\varvec{)}^{1+\beta }{\varvec{u}}( \varvec{\theta },\varvec{y}){\varvec{u}}(\varvec{\theta } ,\varvec{y})^{T}d{\varvec{y}}\\&+\,\int _{{\mathbb {R}}^{m}}\frac{\partial }{ \partial \varvec{\theta }^{T}}{\varvec{u}}(\varvec{\theta } ,\varvec{y}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}} \varvec{)}^{1+\beta }d{\varvec{y}} \\&-\,\int _{{\mathbb {R}}^{m}}\frac{\partial }{\partial {\varvec{\theta }}^{T}}{\varvec{u}}(\varvec{\theta },\varvec{y}){{\mathcal {C}}}{{\mathcal {L}}}( \varvec{\theta },{\varvec{y}}\varvec{)}^{1+\beta }d {\varvec{y}} \\&-\,(1+\beta )\int _{{\mathbb {R}}^{m}}{\varvec{u}}({\varvec{\theta }},\varvec{y}){\varvec{u}}(\varvec{\theta },\varvec{y} )^{T}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}} \varvec{)}^{1+\beta }d\varvec{y}, \end{aligned}$$

or

$$\begin{aligned} \frac{1}{n}\frac{\partial }{\partial \varvec{\theta }} \sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}}_{i},\varvec{\theta } _{0})\underset{n\rightarrow \infty }{\overset{\textit{p}}{ \longrightarrow }}-\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta } ,\varvec{y}){\varvec{u}}(\varvec{\theta },\varvec{y})^{T} {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}}\varvec{)} ^{1+\beta }d\varvec{y=}-{\varvec{H}}_{\beta }(\varvec{\theta }), \end{aligned}$$

in view of (10). Therefore,

$$\begin{aligned} \sqrt{n}\frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}} _{i},\widetilde{\varvec{\theta }}_{c}^{\beta }\right) =&\,\sqrt{n}\frac{1}{n }\sum _{i=1}^{n}\varPsi _{\beta }({\varvec{Y}}_{i},\varvec{\theta } _{0})-\sqrt{n}{\varvec{H}}_{\beta }(\varvec{\theta }_{0})\left( \widetilde{\varvec{\theta }}_{c}^{\beta }-\varvec{\theta } _{0}\right) \\&+o\left( \sqrt{n}\left\| \widetilde{\varvec{\theta }} _{c}^{\beta }-\varvec{\theta }_{0}\right\| ^{2}\right) . \end{aligned}$$

But,

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}}_{i}, \widetilde{\varvec{\theta }}_{c}^{\beta }\right) +{\varvec{M}}( \varvec{\theta }_{0})\widetilde{\varvec{\lambda }}_{n}=o_{p}(1), \end{aligned}$$

therefore

$$\begin{aligned} \sqrt{n}\frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}} _{i},\varvec{\theta }_{0}\right) -\sqrt{n}{\varvec{H}}_{\beta }( \varvec{\theta }_{0})\left( \widetilde{\varvec{\theta }}_{c}^{\beta }-\varvec{\theta }_{0}\right) +\sqrt{n}{\varvec{M}}(\varvec{\theta }_{0})\widetilde{\varvec{\lambda }}_{n}=o_{p}(1), \end{aligned}$$
(49)

in view of (48). On the other hand, a Taylor series expansion of \( {\varvec{m}}(\widetilde{\varvec{\theta }}_{c}^{\beta })\) around the point \(\varvec{\theta }\) gives, subject to the assumption \( {\varvec{m}}(\varvec{\theta })={\mathbf {0}}_{r}\), that

$$\begin{aligned} \sqrt{n}{\varvec{g}}(\widetilde{\varvec{\theta }}_{c}^{\beta })=\sqrt{n }{\varvec{M}}(\varvec{\theta })^{T}\left( \widetilde{{\varvec{\theta }}}_{c}^{\beta }-\varvec{\theta }\right) +o_{p}(1), \end{aligned}$$

i.e.,

$$\begin{aligned} \sqrt{n}{\varvec{M}}(\varvec{\theta })^{T}\left( \widetilde{ \varvec{\theta }}_{c}^{\beta }-\varvec{\theta }\right) +o_{p}(1)= {\mathbf {0}}_{r}. \end{aligned}$$
(50)

Based on (49) and (50), we have

$$\begin{aligned} \left( \begin{array}{c@{\quad }c} {\varvec{H}}_{\beta }(\varvec{\theta }) &{} {\varvec{M}}( \varvec{\theta }) \\ {\varvec{M}}(\varvec{\theta }_{0})^{T} &{} {\varvec{O}}_{r\times r} \end{array} \right) \left( \begin{array}{c} \sqrt{n}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }-{\varvec{\theta }}\right) \\ \sqrt{n}\varvec{\lambda }_{n} \end{array} \right) =\left( \begin{array}{c} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}} _{i},\varvec{\theta }\right) \\ {\mathbf {0}}_{r} \end{array} \right) +o_{p}(1). \end{aligned}$$

Then,

$$\begin{aligned} \left( \begin{array}{c} \sqrt{n}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }-\varvec{\theta }\right) \\ \sqrt{n}\varvec{\lambda }_{n} \end{array}\right) =\left( \begin{array}{c@{\quad }c} {\varvec{H}}_{\beta }(\varvec{\theta }_{0}) &{} {\varvec{M}}( \varvec{\theta }) \\ {\varvec{M}}(\varvec{\theta })^{T} &{} {\varvec{O}}_{r\times r} \end{array}\right) ^{-1}\left( \begin{array}{c} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}} _{i},\varvec{\theta }\right) \\ {\mathbf {0}}_{r} \end{array} \right) +o_{p}(1) \end{aligned}$$

and

$$\begin{aligned} \left( \begin{array}{c} \sqrt{n}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }-{\varvec{\theta }}_{0}\right) \\ \sqrt{n}\varvec{\lambda }_{n} \end{array} \right) =\left( \begin{array}{c@{\quad }c} {\varvec{P}}_{\beta }(\varvec{\theta }) &{} {\varvec{Q}}_{\beta }( \varvec{\theta }) \\ {\varvec{Q}}_{\beta }(\varvec{\theta })^{T} &{} {\varvec{R}} _{\beta }(\varvec{\theta }) \end{array} \right) \left( \begin{array}{c} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}} _{i},\varvec{\theta }\right) \\ {\mathbf {0}}_{r} \end{array} \right) +o_{p}(1), \end{aligned}$$
(51)

where [cf. Sen and Singer 1993, p. 243, Eq. (5.6.24)],

$$\begin{aligned} {\varvec{P}}_{\beta }(\varvec{\theta })= & {} {\varvec{H}}_{\beta }( \varvec{\theta })^{-1}+{\varvec{H}}_{\beta }(\varvec{\theta } )^{-1}{\varvec{M}}(\varvec{\theta }){\varvec{R}}_{\beta }( \varvec{\theta })^{-1}{\varvec{M}}(\varvec{\theta })^{T} {\varvec{H}}_{\beta }(\varvec{\theta })^{-1} \\ {\varvec{Q}}_{\beta }(\varvec{\theta })= & {} -{\varvec{H}}_{\beta }(\varvec{\theta })^{-1}{\varvec{M}}(\varvec{\theta }) {\varvec{R}}_{\beta }(\varvec{\theta })^{-1} \\ {\varvec{R}}_{\beta }(\varvec{\theta })= & {} -{\varvec{M}}( \varvec{\theta })^{T}{\varvec{H}}_{\beta }(\varvec{\theta } )^{-1}{\varvec{M}}(\varvec{\theta }). \end{aligned}$$

These matrices can be also written as follows,

$$\begin{aligned} {\varvec{P}}_{\beta }(\varvec{\theta })= & {} {\varvec{H}}_{\beta }( \varvec{\theta })^{-1}-{\varvec{Q}}_{\beta }(\varvec{\theta }){\varvec{M}}(\varvec{\theta })^{T}{\varvec{H}}_{\beta }( \varvec{\theta })^{-1} \nonumber \\ {\varvec{Q}}_{\beta }(\varvec{\theta })= & {} -{\varvec{H}}_{\beta }(\varvec{\theta })^{-1}{\varvec{M}}(\varvec{\theta }) {\varvec{R}}_{\beta }(\varvec{\theta })^{-1} \nonumber \\ {\varvec{R}}_{\beta }(\varvec{\theta })= & {} -{\varvec{M}}(\varvec{\theta })^{T}{\varvec{H}}_{\beta }(\varvec{\theta })^{-1}{\varvec{M}}(\varvec{\theta }). \end{aligned}$$
(52)

On the other hand,

$$\begin{aligned} \left( \begin{array}{c} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}} _{i},\varvec{\varvec{\theta }}\right) \\ {\mathbf {0}}_{r} \end{array} \right) \underset{n\rightarrow \infty }{\overset{{\mathcal {L}}}{ \longrightarrow }}{\mathcal {N}}\left( \left( \begin{array}{c} {\mathbf {0}}_{p} \\ {\mathbf {0}}_{r} \end{array} \right) ,\left( \begin{array}{c@{\quad }c} {\varvec{J}}_{\beta }(\varvec{\varvec{\theta }}) &{} \varvec{ O} \\ {\varvec{O}} &{} {\varvec{O}} \end{array} \right) \right) , \end{aligned}$$

with \({\varvec{J}}_{\beta }(\varvec{\varvec{\theta }})= {\varvec{E}}_{\varvec{\varvec{\theta }}}\left[ \varPsi _{\beta }\left( {\varvec{Y}},\varvec{\varvec{\theta }}\right) \varPsi _{\beta }\left( {\varvec{Y}},\varvec{\varvec{\theta }}\right) ^{T}\right] \), given by (11). The above limiting relationship and (51) lead

$$\begin{aligned} \left( \begin{array}{c} \sqrt{n}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }-{\varvec{\theta }}\right) \\ \sqrt{n}\varvec{\lambda }_{n} \end{array} \right) \underset{n\rightarrow \infty }{\overset{{\mathcal {L}}}{ \longrightarrow }}{\mathcal {N}}\left( \left( \begin{array}{c} {\mathbf {0}}_{p} \\ {\mathbf {0}}_{r} \end{array} \right) ,\varvec{\varSigma }_{\beta }\varvec{\theta } )\right) , \end{aligned}$$
(53)

where

$$\begin{aligned} \varvec{\varSigma }_{\beta }(\varvec{\varvec{\theta }})=\left( \begin{array}{c@{\quad }c} {\varvec{P}}_{\beta }(\varvec{\theta }) &{} {\varvec{Q}}_{\beta }( \varvec{\theta }) \\ {\varvec{Q}}_{\beta }(\varvec{\theta })^{T} &{} {\varvec{R}} _{\beta }(\varvec{\theta }) \end{array} \right) \left( \begin{array}{c@{\quad }c} {\varvec{J}}_{\beta }(\varvec{\varvec{\theta }}) &{} \varvec{ O} \\ {\varvec{O}} &{} {\varvec{O}} \end{array} \right) \left( \begin{array}{c@{\quad }c} {\varvec{P}}_{\beta }(\varvec{\theta }) &{} {\varvec{Q}}_{\beta }( \varvec{\theta }_{0}) \\ {\varvec{Q}}_{\beta }(\varvec{\theta })^{T} &{} {\varvec{R}} _{\beta }(\varvec{\theta }) \end{array} \right) , \end{aligned}$$

or

$$\begin{aligned} \varvec{\varSigma }_{\beta }(\varvec{\theta })=\left( \begin{array}{c@{\quad }c} {\varvec{P}}_{\beta }(\varvec{\theta }){\varvec{J}}_{\beta }( \varvec{\varvec{\theta }}){\varvec{P}}_{\beta }({\varvec{\theta }}) &{} {\varvec{P}}_{\beta }(\varvec{\theta }){\varvec{J}}_{\beta }(\varvec{\varvec{\theta }}){\varvec{Q}}_{\beta }( \varvec{\theta } ) \\ {\varvec{Q}}_{\beta }(\varvec{\theta })^{T}{\varvec{J}}_{\beta }( \varvec{\varvec{\theta }}){\varvec{P}}_{\beta }({\varvec{\theta }}) &{} {\varvec{Q}}_{\beta }(\varvec{\theta })^{T} {\varvec{J}}_{\beta }(\varvec{\theta }){\varvec{Q}} _{\beta }(\varvec{\theta }) \end{array} \right) . \end{aligned}$$
(54)

The above formulas (52), (53) and (54) lead to the theorem which derives the asymptotic distribution of the RCMDPDE \(\widetilde{ \varvec{\theta }}_{c}^{\beta }\).

1.1.2 Proof of Lemma 1

It is immediate to see that

$$\begin{aligned} {\varvec{E}}\left[ \varPsi _{\beta }({\varvec{Y}},\varvec{\theta }) \right] =\int _{{\mathbb {R}}^{m}}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{\beta +1}{\varvec{u}}(\varvec{\theta },{\varvec{y}})d\varvec{ y}-\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta },{\varvec{y}}) {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{\beta +1}d{\varvec{y}}= {\mathbf {0}} \end{aligned}$$

and

$$\begin{aligned} Cov\left( \varPsi _{\beta }({\varvec{Y}},\varvec{\theta })\right)= & {} {\varvec{E}}\left[ \varPsi _{\beta }\left( {\varvec{Y}},\varvec{\theta } \right) \varPsi _{\beta }\left( {\varvec{Y}},\varvec{\theta }\right) ^{T} \right] \\= & {} {\varvec{E}}\Bigg [ \left( {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{Y}})^{\beta }{\varvec{u}}(\varvec{\theta },{\varvec{Y}})-\int _{ {\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta },{\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{\beta +1}d{\varvec{y}}\right) \\&\times \left( {{\mathcal {C}}}{{\mathcal {L}}}({\varvec{\theta }},{\varvec{Y}})^{\beta }{\varvec{u}}(\varvec{\theta } \varvec{,Y)}-\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{\beta +1}d {\varvec{y}}\right) ^{T}\Bigg ]. \end{aligned}$$

This last expression is simplified, after elementary manipulations, to

$$\begin{aligned} Cov\left( \varPsi _{\beta }({\varvec{Y}},\varvec{\theta })\right) =&\, {\varvec{E}}\left[ {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{Y}} )^{2\beta }{\varvec{u}}(\varvec{\theta },{\varvec{Y}}){\varvec{u}}( \varvec{\theta },{\varvec{Y}})^{T}\right] \\&\text { }-\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{1+\beta }d {\varvec{y}}\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}})^{T}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}} )^{1+\beta }d{\varvec{y}} \\&-\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{1+\beta }d {\varvec{y}}\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}})^{T}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}} )^{1+\beta }d{\varvec{y}} \\&+\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{1+\beta }d {\varvec{y}}\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}})^{T}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}} )^{1+\beta }d{\varvec{y}} \\ =&\,\int _{{\mathbb {R}}^{m}}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}} )^{2\beta +1}{\varvec{u}}(\varvec{\theta },{\varvec{y}})\varvec{u }(\varvec{\theta },{\varvec{y}})^{T}d{\varvec{y}} \\&-\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}})^{1+\beta }d {\varvec{y}}\int _{{\mathbb {R}}^{m}}{\varvec{u}}(\varvec{\theta }, {\varvec{y}})^{T}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta },{\varvec{y}} )^{1+\beta }d{\varvec{y}}. \end{aligned}$$

1.1.3 Proof of Theorem 3

By (18) it is immediate to see that

$$\begin{aligned} \sqrt{n}{\varvec{U}}_{n}^{\beta }\left( \varvec{\theta }_{0}\right) ^{T}\underset{n\rightarrow \infty }{\overset{{\mathcal {L}}}{\longrightarrow }} {\mathcal {N}}\left( {\varvec{0}},{\varvec{J}}_{\beta }(\varvec{\theta } _{0})\right) , \end{aligned}$$

and the result follows.

1.1.4 Proof of Theorem 4

Based on (53) we have

$$\begin{aligned} \sqrt{n}\widetilde{\varvec{\lambda }}_{n}\underset{n\rightarrow \infty }{ \overset{{\mathcal {L}}}{\longrightarrow }}{\mathcal {N}}\left( {\varvec{0}}, {\varvec{Q}}_{\beta }(\varvec{\theta })^{T}{\varvec{J}}_{\beta }( \varvec{\theta }){\varvec{Q}}_{\beta }(\varvec{\theta })\right) . \end{aligned}$$
(55)

By (48),

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}}_{i}, \widetilde{\varvec{\theta }}_{c}^{\beta }\right) +{\varvec{M}}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) \widetilde{\varvec{\lambda }}_{n}=o_{p}(1), \end{aligned}$$

and by (19),

$$\begin{aligned} {\varvec{U}}_{n}^{\beta }\left( \widetilde{\varvec{\theta }} _{c}^{\beta }\right) =\frac{1}{n}\sum _{i=1}^{n}\varPsi _{\beta }\left( {\varvec{Y}}_{i},\widetilde{\varvec{\theta }}_{c}^{\beta }\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} {\varvec{U}}_{n}^{\beta }\left( \widetilde{\varvec{\theta }} _{c}^{\beta }\right) ^{T}=-\widetilde{\varvec{\lambda }}_{n}^{T} {\varvec{M}}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) ^{T}+o_{p}(1) \end{aligned}$$

and

$$\begin{aligned} {\varvec{U}}_{n}^{\beta }\left( \widetilde{\varvec{\theta }} _{c}^{\beta }\right) ^{T}{\varvec{Q}}_{\beta }\left( \widetilde{ \varvec{\theta }}_{c}^{\beta }\right) =&\,\widetilde{\varvec{\lambda } }_{n}^{T}{\varvec{M}}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) ^{T}{\varvec{H}}\left( \widetilde{\varvec{\theta }} _{c}^{\beta }\right) ^{-1}{\varvec{M}}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) \\&\times \left[ {\varvec{M}}\left( \widetilde{{\varvec{\theta }}}_{c}^{\beta }\right) ^{T}{\varvec{H}}\left( \widetilde{ \varvec{\theta }}_{c}^{\beta }\right) ^{-1}{\varvec{M}}\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) \right] ^{-1}+o_{p}(1) \\ =&\,\widetilde{\varvec{\lambda }}_{n}^{T}+o_{p}(1). \end{aligned}$$

hence,

$$\begin{aligned} R_{n}^{\beta }\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) =n \widetilde{\varvec{\lambda }}_{n}^{T}\left( {\varvec{Q}}_{\beta }\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) {\varvec{J}} _{\beta }\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) {\varvec{Q}}_{\beta }\left( \widetilde{\varvec{\theta }}_{c}^{\beta }\right) \right) ^{-1}\widetilde{\varvec{\lambda }}_{n}+o_{p}(1), \end{aligned}$$

and the result follows by (55).

1.2 Computations in Sect. 4.1

We want to compute

$$\begin{aligned} \varvec{\varPsi } _{\beta }\left( {\varvec{Y}},\varvec{\theta }_{0}\right) = {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }{\varvec{u}}( \varvec{\theta }_{0},{\varvec{y}})-\int _{{\mathbb {R}}^{q}}{\varvec{u}}( \varvec{\theta }_{0},{\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta } _{0},{\varvec{y}})^{1+\beta }d{\varvec{y}}. \end{aligned}$$

Accordingly to (22) in Martín et al. (2018)

$$\begin{aligned} {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})= & {} \prod \limits _{r=2}^{q}f_{Y_{r-1},Y_{r}\text { }}\left( y_{r-1},y_{y}\right) \\= & {} \prod \limits _{r=2}^{q}\frac{\sqrt{1-\rho ^{2}}}{2\pi \sigma ^{2}}\exp \left\{ -\frac{1}{2\sigma ^{2}}Q\left( y_{r-1},y_{r}\right) \right\} \\= & {} \frac{(1-\rho ^2)^{(q-1)/2}}{\sqrt{2\pi }^{(q-1)}\sigma ^{2(q-1)}}\exp \left\{ -\frac{1}{2\sigma ^{2}}Q\left( y_{r-1},y_{r}\right) \right\} \end{aligned}$$

with \(Q\left( y_{r-1},y_{r}\right) =(y_{r-1}-\mu )^{2}-2\rho (y_{r-1}-\mu )(y_{r}-\mu )+(y_{r}-\mu )^{2}.\)

The first term of \(\varvec{\varPsi } _{\beta }\left( {\varvec{Y}},\varvec{\theta }_{0}\right) \) is then easily computed as

$$\begin{aligned} {\varvec{u}}(\varvec{\theta },{\varvec{y}})&=\frac{\partial \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial {\varvec{\theta }}}\\&=\left( \frac{\partial \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \mu },\frac{\partial \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \sigma ^2},\frac{\partial \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \rho } \right) ^T, \end{aligned}$$

with

$$\begin{aligned} \frac{\partial \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \mu }&=\frac{1-\rho }{\sigma ^2}\sum _{r=2}^q\left\{ (y_{r}-\mu )+(y_{r-1}-\mu )\right\} ,\\ \frac{\partial \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \sigma ^2}&=-\frac{(q-1)}{\sigma ^2}\\&\quad +\frac{1}{2\sigma ^4}\sum _{r=2}^q\left\{ (y_{r}-\mu )^2-2\rho (y_{r-1}-\mu )(y_{r}-\mu )+(y_{r-1}-\mu )^2\right\} ,\\ \frac{\partial \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \rho }&=-\frac{(q-1)\rho }{1-\rho ^2}+\frac{1}{\sigma ^2}\sum _{r=2}^q(y_{r-1}-\mu )(y_{r}-\mu ). \end{aligned}$$

Further,

$$\begin{aligned} \int _{{\mathbb {R}}^{m}}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}^{\beta +1}{\varvec{u}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}d{\varvec{y}}&= \int _{{\mathbb {R}}^{m}}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}^{\beta +1}\frac{\partial \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}}{\partial \varvec{\theta }}d{\varvec{y}}\\&=\int _{{\mathbb {R}}^{m}}{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}^{\beta }\frac{\partial {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}}{\partial \varvec{\theta }_0}d{\varvec{y}} \nonumber \\&=\int _{{\mathbb {R}}^{m}}\frac{1}{\beta +1}\frac{\partial {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}^{\beta +1}}{\partial \varvec{\theta }}d{\varvec{y}}\\&=\frac{1}{\beta +1} \frac{\partial }{\partial \varvec{\theta }}\int _{{\mathbb {R}}^{m}} {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}^{\beta +1}d{\varvec{y}}, \nonumber \end{aligned}$$

so we need to compute

$$\begin{aligned} \frac{1}{\beta +1} \frac{\partial }{\partial \varvec{\theta }}\int _{{\mathbb {R}}^{m}} {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}^{\beta +1}d{\varvec{y}}. \end{aligned}$$

But

$$\begin{aligned} f_{Y_{r-1},Y_{r}\text { }}^{1+\beta }\left( y_{r-1},y_{y}\right)= & {} \left( \frac{1}{1+\beta }\right) ^{1+\beta }\left( \frac{\sqrt{1-\rho ^{2}}}{2\pi \sigma _{*}^{2}}\right) ^{1+\beta }\exp \left\{ -\frac{1}{2\sigma _{*}^{2}}Q\left( y_{r-1},y_{r}\right) \right\} \\= & {} \left( \frac{1}{1+\beta }\right) ^{1+\beta }\left( \frac{1}{2\pi \sigma _{**}^{2}\sqrt{1-\rho ^{2}}}\right) ^{\beta }g_{Y_{r-1},Y_{r}\text { } }\left( y_{r-1},y_{y}\right) \end{aligned}$$

with \(\sigma _{*}^{2}=\frac{\sigma ^{2}}{1+\beta },\) \(\sigma _{**}^{2}=\frac{\sigma _{*}^{2}}{1-\rho ^{2}}\) and \(g_{Y_{r-1},Y_{r}\text { } }\left( y_{r-1},y_{y}\right) \) the density function corresponding to a bidimensional normal density function with vector mean \(\varvec{\mu }=\left( \mu ,\mu \right) ^{T}\) and variance–covariance matrix

$$\begin{aligned} \left( \begin{array}{c@{\quad }c} \sigma _{**}^{2} &{} \rho \sigma _{**}^{2} \\ \rho \sigma _{**}^{2} &{} \sigma _{**}^{2} \end{array} \right) . \end{aligned}$$

It is, therefore, easy to see that

$$\begin{aligned} \int _{{\mathbb {R}}^{m}} {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}^{\beta +1}d{\varvec{y}}&=\left( \frac{1}{1+\beta }\right) ^{(1+\beta )(q-1) }\left( \frac{1}{2\pi \sigma _{**}^{2}\sqrt{1-\rho ^{2}}}\right) ^{\beta (q-1)}\\&=\left( \frac{1}{1+\beta }\right) ^{(q-1)}\left( \frac{\sqrt{1-\rho ^2}}{\sqrt{2\pi }\sigma ^2}\right) ^{\beta (q-1)}, \end{aligned}$$

and the second term of \(\varvec{\varPsi } _{\beta }\left( {\varvec{Y}},\varvec{\theta }_{0}\right) \) is given by

$$\begin{aligned}&\frac{1}{\beta +1} \frac{\partial }{\partial \varvec{\theta }}\int _{{\mathbb {R}}^{m}} {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_0,{\varvec{y}}\varvec{)}^{\beta +1}d{\varvec{y}}\\&\quad =\left( 0,-\frac{\left( q-1\right) \beta }{\left( 1+\beta \right) ^{q}\sigma ^{2}} \left( \frac{\sqrt{1-\rho ^{2}}}{\sqrt{2\pi } \sigma ^{2}}\right) ^{\left( q-1\right) \beta },-\frac{\left( q-1\right) \beta \rho }{\left( 1+\beta \right) ^{q}\left( 1-\rho ^{2}\right) }\left( \frac{\sqrt{1-\rho ^{2}}}{\sqrt{2\pi } \sigma ^{2}} \right) ^{\left( q-1\right) \beta } \right) . \end{aligned}$$

1.2.1 Computations for complex composite null hypothesis

We want to compute the matrix

$$\begin{aligned} \widehat{{\varvec{H}}}_{\beta }(\varvec{\theta }_{0})=\frac{1}{n} \sum \limits _{i=1}^{n}\frac{\partial \varvec{\varPsi }_{\beta }({\varvec{Y}}_{i},\varvec{\theta }_{0})}{\partial \varvec{\theta }^{T}}, \end{aligned}$$

so we need to obtain the value of

$$\begin{aligned} \frac{\partial \varvec{\varPsi }_{\beta }({\varvec{Y}},\varvec{\theta }_{0})}{\partial \varvec{\theta }^{T}}&=\frac{\partial }{\partial \varvec{\theta }^{T}} \left\{ {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})-\int _{{\mathbb {R}}^{q}}{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{1+\beta }d{\varvec{y}}\right\} \\&=\frac{\partial {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \varvec{\theta }^{T}}-\frac{\partial }{\partial \varvec{\theta }^{T}}\left\{ \int _{{\mathbb {R}}^{q}}{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{1+\beta }d{\varvec{y}}\right\} . \end{aligned}$$

On the one hand

$$\begin{aligned} \frac{\partial {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \varvec{\theta }^{T}}&=\frac{\partial {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }}{\partial \varvec{\theta }^{T}}{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})+{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }\frac{\partial {\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \varvec{\theta }^{T}}\\&=\beta {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})^T{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})+{{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }\frac{\partial {\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \varvec{\theta }^{T}}\\&={{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }\left\{ \beta {\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})^T{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})+\frac{\partial {\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \varvec{\theta }^{T}} \right\} . \end{aligned}$$

Let \(\varvec{\varUpsilon }=\dfrac{\partial {\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \varvec{\theta }^{T}}\), the elements of \(\varvec{\varUpsilon }\) are given by

$$\begin{aligned} \varvec{\varUpsilon }_{(1,1)}&=\frac{\partial ^2 \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \mu ^2}=\frac{2(\rho -1)(q-1)}{\sigma ^2}\\ \varvec{\varUpsilon }_{(2,2)}&=\frac{\partial ^2 \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial (\sigma ^2)^2}=\frac{q-1}{\sigma ^2}\\&\quad -\frac{1}{\sigma ^6}\sum _{r=2}^q\left\{ (y_r-\mu )^2-2\rho (y_{r-1}-\mu )(y_r-\mu )+(y_{r-1}-\mu )^2 \right\} \\ \varvec{\varUpsilon }_{(3,3)}&=\frac{\partial ^2 \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \rho ^2}=\frac{(1-q)(1+\rho ^2)}{(1-\rho ^2)^2}\\ \varvec{\varUpsilon }_{(1,2)}&=\varvec{\varUpsilon }_{(2,1)}=\frac{\partial ^2 \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \mu \partial \sigma ^2}=\frac{\rho -1}{\sigma ^4}\sum _{r=2}^q\left\{ (y_r-\mu )+(y_{r-1}-\mu )\right\} \\ \varvec{\varUpsilon }_{(1,3)}&=\varvec{\varUpsilon }_{(3,1)}=\frac{\partial ^2 \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \mu \partial \rho }=\frac{-1}{\sigma ^2}\sum _{r=2}^q\left\{ (y_r-\mu )+(y_{r-1}-\mu )\right\} \\ \varvec{\varUpsilon }_{(2,3)}&=\varvec{\varUpsilon }_{(3,2)}=\frac{\partial ^2 \log {{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})}{\partial \mu \partial \rho }=\frac{-1}{\sigma ^4}\sum _{r=2}^q\left\{ (y_r-\mu )+(y_{r-1}-\mu )\right\} .\\ \end{aligned}$$

On the other hand, let \(\varvec{\varGamma }=\dfrac{\partial }{\partial \varvec{\theta }^{T}}\left\{ \int _{{\mathbb {R}}^{q}}{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}}){{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{1+\beta }d{\varvec{y}}\right\} \). The elements of \(\varvec{\varGamma }\) are given by

$$\begin{aligned} \varvec{\varGamma }_{(1,1)}&=\varvec{\varGamma }_{(1,2)}=\varvec{\varGamma }_{(2,1)}=\varvec{\varGamma }_{(1,3)}=\varvec{\varGamma }_{(3,1)}=0\\ \varvec{\varGamma }_{(2,2)}&=\dfrac{(q-1)(q+\beta -1)}{(\beta +1)^q\sigma ^4}\left[ \dfrac{\sqrt{1-\rho ^2}}{2\pi \sigma ^2}\right] ^{(q-1)\beta }\\ \varvec{\varGamma }_{(3,3)}&=\dfrac{\beta (q-1)((\beta q -\beta -1)\rho ^2-1)}{(\beta +1)^q(1-\rho ^2)^2}\left[ \dfrac{\sqrt{1-\rho ^2}}{2\pi \sigma ^2}\right] ^{(q-1)\beta }\\ \varvec{\varGamma }_{(2,3)}&=\varvec{\varGamma }_{(3,2)}=\dfrac{\beta ^2(q-1)^2\rho }{(\beta +1)^q(1-\rho ^2)\sigma ^2}\left[ \dfrac{\sqrt{1-\rho ^2}}{2\pi \sigma ^2}\right] ^{(q-1)\beta }\\ \end{aligned}$$

and \(\frac{\partial \varvec{\varPsi }_{\beta }({\varvec{Y}}_{i},\varvec{\theta }_{0})}{\partial \varvec{\theta }^{T}}\) is given by

$$\begin{aligned} \frac{\partial \varvec{\varPsi }_{\beta }({\varvec{Y}}_{i},\varvec{\theta }_{0})}{\partial \varvec{\theta }^{T}}={{\mathcal {C}}}{{\mathcal {L}}}(\varvec{\theta }_{0},{\varvec{y}})^{\beta }\left\{ \beta {\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})^T{\varvec{u}}(\varvec{\theta }_{0},{\varvec{y}})+\varvec{\varUpsilon }\right\} -\varvec{\varGamma }. \end{aligned}$$

1.3 Example R code

The following R codes are provided in order to help the reader to implement the proposed CMDPDE and the corresponding Rao-type tests for any practical applications. These codes were used for the simulation studies presented in Table 4 of Sect. 5 of the paper.

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castilla, E., Martín, N., Pardo, L. et al. Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator. Stat Papers 62, 1003–1041 (2021). https://doi.org/10.1007/s00362-019-01122-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01122-x

Keywords

Navigation