Skip to main content
Log in

Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The statistical inference of multicomponent stress-strength reliability under the adaptive Type-II hybrid progressive censored samples for the Weibull distribution is considered. It is assumed that both stress and strength are two Weibull independent random variables. We study the problem in three cases. First assuming that the stress and strength have the same shape parameter and different scale parameters, the maximum likelihood estimation (MLE), approximate maximum likelihood estimation (AMLE) and two Bayes approximations, due to the lack of explicit forms, are derived. Also, the asymptotic confidence intervals, two bootstrap confidence intervals and highest posterior density (HPD) credible intervals are obtained. In the second case, when the shape parameter is known, MLE, exact Bayes estimation, uniformly minimum variance unbiased estimator (UMVUE) and different confidence intervals (asymptotic and HPD) are studied. Finally, assuming that the stress and strength have the different shape and scale parameters, ML, AML and Bayesian estimations on multicomponent reliability have been considered. The performances of different methods are compared using the Monte Carlo simulations and for illustrative aims, one data set is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antweiler RC (2015) Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets. II. group comparisons. Environ Sci Technol 49:13439–13446

    Article  Google Scholar 

  • AL Sobhi MM, Soliman AA (2016) Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes. Appl Math Model 40:1180–1192

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods and applications. Birkhäuser, Boston

    Book  Google Scholar 

  • Bhattacharyya GK, Johnson RA (1974) Estimation of reliability in multicomponent stress-strength model. J Am Stat Assoc 69:966–970

    Article  MathSciNet  Google Scholar 

  • Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian Credible and HPD intervals. J Comput Gr Stat 8:69–92

    MathSciNet  Google Scholar 

  • Efron B (1982) The jackknife, the bootstrap and other re-sampling plans. SIAM, CBMSNSF regional conference series in applied mathematics, No. 34, Philadelphia

  • Epstein B (1954) Truncated life tests in the exponential case. Ann Math Stat 25:555–564

    Article  MathSciNet  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series, and products, 5th edn. Academic Press, Boston

    MATH  Google Scholar 

  • Hall P (1988) Theoretical comparison of bootstrap confidence intervals. Ann Stat 16:927–953

    Article  MathSciNet  Google Scholar 

  • Hanagal DD (1999) Estimation of system reliability. Stat Pap 40:99–106

    Article  Google Scholar 

  • Kizilaslan F, Nadar M (2018) Estimation of reliability in a multicomponent stress-strength model based on a bivariate Kumaraswamy distribution. Stat Pap 59:307–340

    Article  MathSciNet  Google Scholar 

  • Kizilaslan F, Nadar M (2016) Estimation and prediction of the Kumaraswamy distribution based on record values and inter-record times. J Stat Comput Simul 86:2471–2493

    Article  MathSciNet  Google Scholar 

  • Kohansal A (2017) On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample. Stat Pap. https://doi.org/10.1007/s00362-017-0916-6

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D, Joarder A (2006) Analysis of type-II progressively hybrid censored data. Comput Stat Data Anal 50:2509–2528

    Article  MathSciNet  Google Scholar 

  • Lindley DV (1980) Approximate Bayesian methods. Trab de Estad investig oper 3:281–288

    MATH  Google Scholar 

  • Nadar M, Kizilaslan F (2016) Estimation of reliability in a multicomponent stress-strength model based on a Marshall-Olkin bivariate weibull Distribution. IEEE Trans Reliab 65:370–380

    Article  Google Scholar 

  • Nadar M, Papadopoulos A, Kizilaslan F (2013) Statistical analysis for Kumaraswamy’s distribution based on record data. Stat Pap 54:355–369

    Article  MathSciNet  Google Scholar 

  • Nassar M, Abo-Kasem OE (2017) Estimation of the inverse Weibull parameters under adaptive type-II progressive hybrid censoring scheme. J Comput Appl Math 315:228–239

    Article  MathSciNet  Google Scholar 

  • Ng HKT, Kundu D, Chan PS (2009) Statistical analysis of exponential lifetimes under an adaptive Type-II progressively censoring scheme. Nav Res Log 56:687–698

    Article  Google Scholar 

  • Sürücü B (2015) Testing for censored bivariate distributions with applications to environmental data. Environ Ecol Stat 22:637–649

    Article  MathSciNet  Google Scholar 

  • Tate EL, Freeman SN (2000) Three modelling approaches for seasonal streamflow droughts in southern Africa: the use of censored data. Hydrol Sci J 45:27–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirin Shoaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For three parameters case, we compute 13 at \(\widehat{\Theta }=(\widehat{\theta }_1,\widehat{\theta }_2,\widehat{\theta }_3)\), where

$$\begin{aligned} d_i&=\rho _1\sigma _{i1}+\rho _2\sigma _{i2}+\rho _3\sigma _{i3}, ~~i=1,2,3,\\ d_4&=u_{12}\sigma _{12}+u_{13}\sigma _{13}+u_{23}\sigma _{23},\\ d_5&=\frac{1}{2}(u_{11}\sigma _{11}+u_{22}\sigma _{22}+u_{33}\sigma _{33}),\\ A&=\ell _{111}\sigma _{11}+2\ell _{121}\sigma _{12}+2\ell _{131}\sigma _{13} +2\ell _{231}\sigma _{23}+\ell _{221}\sigma _{22} +\ell _{331}\sigma _{33},\\ B&=\ell _{112}\sigma _{11}+2\ell _{122}\sigma _{12}+2\ell _{132}\sigma _{13} +2\ell _{232}\sigma _{23}+\ell _{222}\sigma _{22} +\ell _{332}\sigma _{33},\\ C&=\ell _{113}\sigma _{11}+2\ell _{123}\sigma _{12}+2\ell _{133}\sigma _{13} +2\ell _{233}\sigma _{23}+\ell _{223}\sigma _{22} +\ell _{333}\sigma _{33}. \end{aligned}$$

In our case, for \((\theta _1,\theta _2,\theta _3)\equiv (\alpha ,\theta ,\lambda )\) and \(u\equiv u(\alpha ,\theta ,\lambda )=R_{s,k}\) as provided in (3), we have

$$\begin{aligned} \rho _1&=\frac{a_1-1}{\alpha }-b_1,~~ \rho _2=-\frac{a_2+1}{\theta } +\frac{b_2}{\theta ^2},~~~ \rho _3=-\frac{a_3+1}{\lambda }+\frac{b_3}{\lambda ^2},\\ \ell _{11}&=-\frac{n(k+1)}{\alpha ^2}-\frac{1}{\lambda }\bigg [\sum _{i=1}^n y_i^\alpha \log ^2(y_i)+\sum _{i=1}^{J_1}S_iy_i^\alpha \log ^2(y_i) +S_ny_n^\alpha \log ^2(y_n)\bigg ]\\&\quad -\; \frac{1}{\theta }\bigg [\sum _{i=1}^n\sum _{j=1}^k x_{ij}^\alpha \log ^2(x_{ij})+\sum _{i=1}^n\sum _{j=1}^{J_2}R_{ij} x_{ij}^\alpha \log ^2(x_{ij})+\sum _{j=1}^{n}R_{ik} x_{ik}^\alpha \log ^2(x_{ik})\bigg ],\\ \ell _{12}&=\frac{1}{\theta ^2}\bigg [\sum _{i=1}^{n}\sum _{j=1}^k x_{ij}^\alpha \log (x_{ij}) +\sum _{i=1}^{n}\sum _{j=1}^{J_2}R_{ij}x_{ij}^\alpha \log (x_{ij}) +\sum _{i=1}^{n}R_{ik}x_{ik}^\alpha \log (x_{ik})\bigg ]=\ell _{21},\\ \ell _{13}&=\frac{1}{\lambda ^2}\bigg [\sum _{i=1}^{n}y_{i}^\alpha \log (y_i) +\sum _{i=1}^{J_1}S_iy_{i}^\alpha \log (y_i) +S_ny_{n}^\alpha \log (y_n)\bigg ]=\ell _{31},\\ \ell _{22}&=\frac{nk}{\theta ^2}-\frac{2}{\theta ^3}\bigg [\sum _{i=1}^{n} \sum _{j=1}^kx_{ij}^\alpha +\sum _{i=1}^{n}\sum _{j=1}^{J_2}R_{ij}x_{ij}^\alpha +\sum _{i=1}^{n}R_{ik}x_{ik}^\alpha \bigg ],\\ \ell _{23}&=0=\ell _{32},\\ \ell _{33}&=\frac{n}{\lambda ^2}-\frac{2}{\lambda ^3} \bigg [\sum _{i=1}^{n}y_{i}^\alpha +\sum _{i=1}^{J_1}S_iy_{i}^\alpha +S_ny_{n}^\alpha \bigg ]. \end{aligned}$$

Also, by using \(\ell _{ij}, i,j = 1,2,3, \sigma _{ij}, i,j = 1,2,3\) can be obtained and

$$\begin{aligned} \ell _{111}&=\frac{2n(k+1)}{\alpha ^3}-\frac{1}{\lambda }\bigg [\sum _{i=1}^n y_i^\alpha \log ^3(y_i)+\sum _{i=1}^{J_1}S_iy_i^\alpha \log ^3(y_i) +S_ny_n^\alpha \log ^3(y_n)\bigg ]\\&-\frac{1}{\theta }\bigg [\sum _{i=1}^n\sum _{j=1}^k x_{ij}^\alpha \log ^3(x_{ij})+\sum _{i=1}^n\sum _{j=1}^{J_2}R_{ij} x_{ij}^\alpha \log ^3(x_{ij})+\sum _{j=1}^{n}R_{ik} x_{ik}^\alpha \log ^3(x_{ik})\bigg ],\\ \ell _{112}&=\frac{1}{\theta ^2}\bigg [\sum _{i=1}^{n}\sum _{j=1}^kx_{ij}^\alpha \log ^2(x_{ij}) +\sum _{i=1}^{n}\sum _{j=1}^{J_2}R_{ij}x_{ij}^\alpha \log ^2(x_{ij}) +\sum _{i=1}^{n}R_{ik}x_{ik}^\alpha \log ^2(x_{ik})\bigg ]\\&=\ell _{211}=\ell _{121},\\ \ell _{113}&=\frac{1}{\lambda ^2}\bigg [\sum _{i=1}^{n}y_{i}^\alpha \log ^2(y_i) +\sum _{i=1}^{J_1}S_iy_{i}^\alpha \log ^2(y_i) +S_ny_{n}^\alpha \log ^2(y_n)\bigg ]\\&=\ell _{311}=\ell _{131},\\ \ell _{122}&=-\frac{2}{\theta ^3}\bigg [\sum _{i=1}^{n}\sum _{j=1}^k x_{ij}^\alpha \log (x_{ij}) +\sum _{i=1}^{n}\sum _{j=1}^{J_2}R_{ij}x_{ij}^\alpha \log (x_{ij}) +\sum _{i=1}^{n}R_{ik}x_{ik}^\alpha \log (x_{ik})\bigg ]\\&=\ell _{221}=\ell _{212},\\ \ell _{133}&=-\frac{2}{\lambda ^3}\bigg [\sum _{i=1}^{n}y_{i}^\alpha \log (y_i) +\sum _{i=1}^{J_1}S_iy_{i}^\alpha \log (y_i) +S_ny_{n}^\alpha \log (y_n)\bigg ]=\ell _{331}=\ell _{313},\\ \ell _{222}&=-\frac{2nk}{\theta ^3}+\frac{6}{\theta ^4}\bigg [\sum _{i=1}^{n} \sum _{j=1}^kx_{ij}^\alpha +\sum _{i=1}^{n}\sum _{j=1}^{J_2}R_{ij}x_{ij}^\alpha +\sum _{i=1}^{n}R_{ik}x_{ik}^\alpha \bigg ],\\ \ell _{333}&=-\frac{2n}{\lambda ^3}+\frac{6}{\lambda ^4}\bigg [\sum _{i=1}^{n}y_{i}^\alpha +\sum _{i=1}^{J_1}S_iy_{i}^\alpha +S_ny_{n}^\alpha \bigg ], \end{aligned}$$

and other \(\ell _{ijk}=0\). In addition, \(u_1=\partial R_{s,k}/\partial \alpha =0\), \(u_{i1}=\partial ^2 R_{s,k}/(\partial \theta _i\partial \alpha )=0\), \(i=1,2,3\), and \(u_2\), \(u_3\) are given in (10) and (11), respectively. Also,

$$\begin{aligned} u_{22}&=\sum _{p=s}^{k}\sum _{q=0}^{k-p}\left( {\begin{array}{c}k\\ p\end{array}}\right) \left( {\begin{array}{c}k-p\\ q\end{array}}\right) \frac{(-1)^{q+1}2\lambda (p+q)}{(\theta +\lambda (p+q))^3},\\ u_{23}&=\sum _{p=s}^{k}\sum _{q=0}^{k-p}\left( {\begin{array}{c}k\\ p\end{array}}\right) \left( {\begin{array}{c}k-p\\ q\end{array}}\right) \frac{(-1)^{q+1}(p+q)(\lambda (p+q)-\theta )}{(\theta +\lambda (p+q))^3}=u_{32},\\ u_{33}&=\sum _{p=s}^{k}\sum _{q=0}^{k-p}\left( {\begin{array}{c}k\\ p\end{array}}\right) \left( {\begin{array}{c}k-p\\ q\end{array}}\right) \frac{(-1)^{q}2\theta (p+q)^2}{(\theta +\lambda (p+q))^3}. \end{aligned}$$

Hence,

$$\begin{aligned} d_4&=u_{23}\sigma _{23},\qquad d_5=\frac{1}{2}(u_{22}\sigma _{22} +u_{33}\sigma _{33}),\\ A&=\ell _{111}\sigma _{11}+2\ell _{121}\sigma _{12} +2\ell _{131}\sigma _{13}+\ell _{221}\sigma _{22}+\ell _{331}\sigma _{33},\\~~~ B&=\ell _{112}\sigma _{11}+2\ell _{122}\sigma _{12}+\ell _{222}\sigma _{22},\quad C=\ell _{113}\sigma _{11}+2\ell _{133}\sigma _{13}+\ell _{333}\sigma _{33}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohansal, A., Shoaee, S. Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data. Stat Papers 62, 309–359 (2021). https://doi.org/10.1007/s00362-019-01094-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01094-y

Keywords

Mathematics Subject Classification

Navigation