Skip to main content
Log in

Detecting trend change in hazard functions—an L-statistic approach

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

A unified test is proposed to detect trend change in hazard functions. Test statistics based on a weighted integral approach are constructed utilizing a measure of deviation from exponentiality. We exploit L-statistic theory to obtain the exact and asymptotic distributions of our statistics and establish the consistency of the test. Theoretical results of previous works are obtained as special cases. A simulation study shows significant improvement in power depending on appropriate choice of parameters j and k introduced in our work. Finally, applications to real life data sets are presented to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarset MV (1987) How to identify a bathtub hazard rate. IEEE Trans Reliab R–36:106–108

    MATH  Google Scholar 

  • Alidrisi MS, Abad S, Ozkul O (1991) Regression models for estimating survival of patients with non-Hodgkin’s lymphoma. Microelectron Reliab 31:473–480

    Google Scholar 

  • Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    MATH  Google Scholar 

  • Anis MZ (2013) A family of tests for exponentiality against IFR alternatives. J Stat Plan Inference 143:1409–1415

    MathSciNet  MATH  Google Scholar 

  • Anis MZ (2014) Tests of non-monotonic stochastic aging notions in reliability theory. Stat Papers 55:691–714

    MathSciNet  MATH  Google Scholar 

  • Anis MZ, Mitra M (2011) A generalized Hollander-Proschan type test for NBUE alternatives. Stat Probab Lett 81(1):126–132

    MathSciNet  MATH  Google Scholar 

  • Bain LJ (1974) Analysis of linear failure rate life-testing distributions. Technometrics 16:551–560

    MathSciNet  MATH  Google Scholar 

  • Belzunce F, Pinar JF, Ruiz JM (2005) On testing the dilation order and HNBUE alternatives. Ann Inst Stat Math 57(4):803–815

    MathSciNet  MATH  Google Scholar 

  • Bergman B, Klefsjö B (1989) A family of test statistics for detecting monotone mean residual life. J Stat Plan Inference 21:161–178

    MathSciNet  MATH  Google Scholar 

  • Berrendero JR, Cárcamo J (2009) Characterizations of exponentiality within the HNBUE class and related tests. J Stat Plan Inference 139:2399–2406

    MathSciNet  MATH  Google Scholar 

  • Bickel PJ, Doksum K (1969) Tests of monotone failure rate based on normalized spacings. Ann Math Stat 40:1216–1235

    MathSciNet  MATH  Google Scholar 

  • Boos DD (1979) A differential for L-statistics. Ann Stat 7:955–959

    MathSciNet  MATH  Google Scholar 

  • Box GEP (1954) Some theorems on quadratic forms applied in the study of analysis variance problems, I. Effect of inequality of variance in the one way classification. Ann Math Stat 25:290–302

    MathSciNet  MATH  Google Scholar 

  • Bray T, Crawford G, Proschan F (1967) Maximum likelihood estimation of a U-shaped failure rate function. Math Note vol 534. Boeing Scientific Research Laboratories, Seattle, WA

  • Davis DJ (1952) An analysis of some failure data. J Am Stat Assoc 47:113–150

    Google Scholar 

  • Diab LS (2010) Testing for NBUL using goodness of fit approach with applications. Stat Papers 51:27–40

    MathSciNet  MATH  Google Scholar 

  • Duan Q, Liu J (2016) Modelling a bathtub-shaped failure rate by a Coxian distribution. IEEE Trans Reliab 65(2):878–885

    Google Scholar 

  • Ebeling CE (1997) An introduction to reliability and maintainability engineering, International edn. McGraw-Hill Inc, New York

    Google Scholar 

  • Fortiana F, Grané A (2002) A scale-free goodness-of-fit statistic for the exponential distribution based on maximum correlations. J Stat Plan Inference 108:85–97

    MathSciNet  MATH  Google Scholar 

  • Ghosh S, Mitra M (2017a) A Hollander-Proschan type test when ageing is not monotone. Stat Probab Lett 121:119–127

    MathSciNet  MATH  Google Scholar 

  • Ghosh S, Mitra M (2017b) A weighted integral approach to testing against HNBUE alternatives. Stat Probab Lett 129:58–64

    MathSciNet  MATH  Google Scholar 

  • Glaser RE (1980) Bathtub and related failure rate characterizations. J Am Stat Assoc 75:667–672

    MathSciNet  MATH  Google Scholar 

  • Guess F, Hollander M, Proschan F (1986) Testing exponentiality versus a trend change in mean residual life. Ann Stat 14(4):1388–1398

    MathSciNet  MATH  Google Scholar 

  • Hawkins DL, Kochar S, Loader C (1992) Testing exponentiality against IDMRL distributions with unknown change point. Ann Stat 20:280–290

    MathSciNet  MATH  Google Scholar 

  • Hjorth U (1980) A reliability distribution with increasing, decreasing, constant bathtub failure rates. Technometrics 22:99–107

    MathSciNet  MATH  Google Scholar 

  • Hollander M, Proschan F (1975) Tests for the mean residual life. Biometrika 62(3):585–593

    MathSciNet  MATH  Google Scholar 

  • Kamins M (1962) Rules for planned replacement of aircraft and missile parts. RAND Memo RM-2810-PR, RAND Corp, Santa Monica, CA

  • Klar B (2003) On a test of exponentiality against Laplace order dominance. Statistics 37(6):505–515

    MathSciNet  MATH  Google Scholar 

  • Lai CD, Xie M (2006) Stochastic ageing and dependence for reliability. Springer, New York

    MATH  Google Scholar 

  • Lai CD, Xie M, Murthy DNP (2001) Bathtub-shaped failure rate life distributions. Handb Stat 20:69–104

    MathSciNet  Google Scholar 

  • Lim JH, Park DH (1998) A family of tests for trend change in mean residual life. Commun Stat Theory Methods 27(5):1163–1179

    MathSciNet  MATH  Google Scholar 

  • Majumder P, Mitra M (2017) A test for detecting Laplace order dominance and related Bahadur efficiency issues. Stat Papers https://doi.org/10.1007/s00362-017-0901-0

  • Matsunawa T (1985) The exact and approximate distributions of linear combinations of selected order statistics from a uniform distribution. Ann Inst Stat Math 37:1–16

    MathSciNet  MATH  Google Scholar 

  • Matthews DE, Farewell VT (1982) On testing for a constant hazard against a change-point alternative. Biometrics 38:463–468

    Google Scholar 

  • Matthews DE, Farewell VT, Pyke R (1985) Asymptotic score-statistic processes and tests for constant hazard against a change-point alternative. Ann Stat 13:583–591

    MathSciNet  MATH  Google Scholar 

  • Mitra M, Anis MZ (2008) An \(L\)-statistic approach to a test of exponentiality against IFR alternatives. J Stat Plan Inference 138:3144–3148

    MathSciNet  MATH  Google Scholar 

  • Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans Reliab 42:299–302

    MATH  Google Scholar 

  • Na MH, Lee S (2003) A family of IDMRL tests with unknown turning point. Statistics 37(5):457–462

    MathSciNet  MATH  Google Scholar 

  • Na MH, Jeon J, Park DH (2005) Testing whether failure rate changes its trend with unknown change point. J Stat Plan Inference 129:317–325

    MathSciNet  MATH  Google Scholar 

  • Pamme H, Kunitz H (1993) Detection and modelling of aging properties in lifetime data. In: Basu AP (ed) Advances in reliability. North-Holland, New York, pp 291–302

    MATH  Google Scholar 

  • Park DH (1988) Testing whether failure rate changes its trend. IEEE Trans Reliab 37(4):375–378

    MATH  Google Scholar 

  • Proschan F (1963) Theoretical explanation of observed decreasing failure rate. Technometrics 5(3):375–383

    MathSciNet  Google Scholar 

  • Rajarshi MB, Rajarshi SM (1988) Bathtub distributions—a review. Commun Stat Theory Methods 17:2597–2622

    MathSciNet  MATH  Google Scholar 

  • Sankaran PG, Midhu NN (2016) Testing exponentiality using mean residual quantile function. Stat Papers 57:235–247

    MathSciNet  MATH  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York

    MATH  Google Scholar 

  • Shen Y, Tang L-C, Xie M (2009) A model for upside-down bathtub-shaped mean residual life and its properties. IEEE Trans Reliab 58(3):425–431

    Google Scholar 

  • Wu JW, Wu CC, Tsai MH (2005) Optimal parameter estimation of the two-parameter bathtub-shaped lifetime distribution based on a type II right censored sample. Appl Math Comput 167(2):807–819

    MathSciNet  MATH  Google Scholar 

  • Xie M, Lai CD (1995) Reliability analysis using additive Weibull model with bathtub-shaped failure rate function. Reliab Eng Syst Saf 52:87–93

    Google Scholar 

  • Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub-shaped failure rate function. Reliab Eng Syst Saf 76:279–285

    Google Scholar 

  • Zhang T, Dwight R, El-Akruti K (2013) On a Weibull related distribution model with decreasing, increasing and upside-down bathtub-shaped failure rate. In IEEE 2013 annual reliability and maintainability symposium (RAMS)—Orlando, FL (2013.1.28–2013.1.31)

Download references

Acknowledgements

The authors are grateful to all anonymous reviewers for their insightful comments on an earlier version of this manuscript which have led to a substantial improvement in the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Majumder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1:

Substituting the limits of integration in (1) we have,

$$\begin{aligned} T_{j,k}(F)= & {} \int _0^{F^{-1}(p)}\int _0^t[r(s)-r(t)][\bar{F}(s)]^{j}[\bar{F}(t)]^{k}ds dt \nonumber \\&+\int _{F^{-1}(p)}^\infty \int _{F^{-1}(p)}^t[r(t)-r(s)][\bar{F}(s)]^{j}[\bar{F}(t)]^{k}ds dt \nonumber \\= & {} I_1 + I_2 \end{aligned}$$
(8)

A lengthy and involved computation using integration by parts and interchange of the order of integration yields

$$\begin{aligned} I_1= & {} \int _0^{F^{-1}(p)}\left( \int _0^t f(s)[\bar{F}(s)]^{j-1}ds\right) [\bar{F}(t)]^{k}dt\\&-\int _0^{F^{-1}(p)}\left( \int _0^t [\bar{F}(s)]^{j}ds\right) f(t)[\bar{F}(t)]^{k-1}dt \\= & {} \frac{1}{j}\int _0^{F^{-1}(p)}\left( 1-[\bar{F}(t)]^{j}\right) [\bar{F}(t)]^{k}dt \\&- \frac{1}{k}\int _0^{F^{-1}(p)}\left( [\bar{F}(s)]^{k}-(1-p)^k\right) [\bar{F}(s)]^{j}ds\\= & {} \int _0^{F^{-1}(p)} \frac{1}{j}\left( (\bar{F}(s))^k - (\bar{F}(s))^{j+k} \right) ds \\&-\int _0^{F^{-1}(p)} \frac{1}{k}\left( (\bar{F}(s))^{j+k} - (1-p)^k (\bar{F}(s))^j\right) ds \\= & {} \int _0^{F^{-1}(p)} \frac{(\bar{F}(s))^k}{j}ds - \left( \frac{j+k}{jk} \right) \int _0^{F^{-1}(p)} (\bar{F}(s))^{j+k} ds\\&+ \frac{(1-p)^k}{k}\int _0^{F^{-1}(p)}(\bar{F}(s))^j ds \end{aligned}$$

and

$$\begin{aligned} I_2= & {} \int _{F^{-1}(p)}^\infty \int _{F^{-1}(p)}^t f(t)[\bar{F}(t)]^{k-1}[\bar{F}(s)]^{j}ds dt \\&- \int _{F^{-1}(p)}^\infty \int _{F^{-1}(p)}^t f(s)[\bar{F}(s)]^{j-1}[\bar{F}(t)]^{k}ds dt \\= & {} \int _{F^{-1}(p)}^\infty [\bar{F}(s)]^{j}\left( -\int _{s}^{\infty } [\bar{F}(t)]^{k-1}d\bar{F}(t) \right) ds \\&- \int _{F^{-1}(p)}^\infty [\bar{F}(t)]^{k}\left( -\int _{F^{-1}(p)}^{t} [\bar{F}(s)]^{j-1}d\bar{F}(s) \right) dt \\= & {} \int _{F^{-1}(p)}^\infty \frac{(\bar{F}(s))^{j+k}}{k} ds - \frac{(1-p)^j}{j}\int _{F^{-1}(p)}^\infty (\bar{F}(s))^k ds\\&+ \int _{F^{-1}(p)}^\infty \frac{(\bar{F}(s))^{j+k}}{j} ds \\= & {} \frac{(j+k)}{jk} \int _{F^{-1}(p)}^\infty (\bar{F}(s))^{j+k} ds - \frac{(1-p)^j}{j}\int _{F^{-1}(p)}^\infty (\bar{F}(s))^k ds \end{aligned}$$

Therefore, using equation (8) and the results of the following integrations for any \(l>0\), \(\int _0^{F^{-1}(p)}(\bar{F}(s))^l ds = (1-p)^l F^{-1}(p)+ l \int _0^{F^{-1}(p)}s(\bar{F}(s))^{l-1} dF(s)\) and \(\int _{F^{-1}(p)}^\infty (\bar{F}(s))^l ds = -(1-p)^l F^{-1}(p)+ l \int _{F^{-1}(p)}^\infty s(\bar{F}(s))^{l-1} dF(s),\) we obtained the final result. \(\square \)

Proof of Proposition 2:

Using a plug-in estimator in (1) (viz. empirical distribution function \(\hat{F}_n\) for the unknown life distribution function F), we have

$$\begin{aligned} T_{j,k}(\hat{F}_n)= & {} \int _0^\infty sJ_{j,k}(\hat{F}_n(s))d\hat{F}_n(s)\\&-\left\{ (1-p)^j\left( \dfrac{1}{j}+\dfrac{1}{k} \right) -\dfrac{1}{j} \right\} (1-p)^k \hat{F}^{-1}_n(p)\\= & {} \sum _{i=1}^n \int _{X_{(i-1)}}^{X_{(i)}}sJ_{j,k}(\hat{F}_n(s))d\hat{F}_n(s)\\&-\left\{ (1-p)^j\left( \dfrac{1}{j}+\dfrac{1}{k} \right) -\dfrac{1}{j} \right\} (1-p)^k \hat{F}^{-1}_n(p) \end{aligned}$$

which on simplification yields the result. \(\square \)

In Theorem 4 the expression for variance of \(T_{j,k}^*(\hat{F}_n)\) under \(H_0\) is given as follows: for \(j \ne \frac{1}{2}\),  \(k > \frac{1}{2}\),

$$\begin{aligned} \sigma ^2(J_{j,k},F_0)= & {} \dfrac{1 + 2k ( k-1) + j ( 2 k-1)}{k^2 (2 k-1) (j + 2 k-1) ( 2 j + 2 k-1)} - \dfrac{2 (j-1) (1 - p)^k}{k^2 ( j + k-1) ( 2 j + k-1)} \nonumber \\&+ \dfrac{\{j^2+k^2(2j-1)\} }{ j^2 k^2(2j-1)} (1 - p)^{2 k} - \dfrac{2k(1-p)^{2k-1}}{j^2(2k-1)} \nonumber \\&+ \dfrac{2(k-1)(1-p)^{j+2k-1}}{j^2(j+k-1)(j+2k-1)}+ \dfrac{p (1-p)^{2k-1}}{j^2}\nonumber \\&- \dfrac{( j-1 - 2 j^3) k^2 + ( j-1) ( 2 j-3) k^3+2 k^4(2 j-1) }{j^2 k ^2 (2j-1)(2j+k-1)(2k-1)(j+2k-1)}(1 - p)^{2j+2k-1}\nonumber \\&- \dfrac{j^2(j-1)(2j-1)+j^2 k(j(5-4j)-1)}{j^2 k ^2 (2j-1)(2j+k-1)(2k-1)(j+2k-1)}(1-p)^{2j+2k-1} \end{aligned}$$
(9)

and for \(j = \frac{1}{2}\),   \(k > \frac{1}{2}\),

$$\begin{aligned} \sigma ^2(J_{\frac{1}{2},k},F_0)= & {} \dfrac{1-2k+4k^2}{2k^3(1-6k+8k^2)} + \dfrac{2(-1+4k-3k^2)+12k^3(4k+1)}{k^3(1-6k+8k^2)} (1-p)^k \nonumber \\&+\dfrac{3(32k^4+1-2k)p(1-p)^{2k}}{2k^2(1-6k+8k^2)} + \left\{ \dfrac{2-11k}{k^3(1-6k+8k^2)}\right. \nonumber \\&\left. - \dfrac{\log (1-p)}{k^2}\right\} (1-p)^{2k} \nonumber \\&+ \dfrac{3(1-p)^{(k+\frac{1}{2})}}{k^2(1-6k+8k^2)}\nonumber \\&+ \dfrac{4(4k+17)-2(10k+41)p-6(2k-3)p^2}{1-6k+8k^2}(1-p)^{(2k-1)} \nonumber \\&- \dfrac{12(4k+3)(1-p)^{k+\frac{1}{2}}}{(1-6k+8k^2)} \nonumber \\&+ \dfrac{4\left\{ 7(k+2)p -(4k+11) \right\} }{(1-6k+8k^2)}(1-p)^{(2k-\frac{3}{2})}\nonumber \\&- \dfrac{12(k+1)p^2 (1-p)^{\left( 2k-\frac{3}{2}\right) }}{(1-6k+8k^2)} \nonumber \\&+ \dfrac{ 6 - 3p(16k^3+1) }{k(1-6k+8k^2)} (1-p)^{\left( 2k-\frac{1}{2}\right) } \end{aligned}$$
(10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, P., Mitra, M. Detecting trend change in hazard functions—an L-statistic approach. Stat Papers 62, 31–52 (2021). https://doi.org/10.1007/s00362-018-01074-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-01074-8

Keywords

Mathematics Subject Classification

Navigation