Skip to main content
Log in

Ridge-type pretest and shrinkage estimations in partially linear models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we suggest pretest and shrinkage ridge regression estimators for a partially linear regression model, and compare their performance with some penalty estimators. We investigate the asymptotic properties of proposed estimators. We also consider a Monte Carlo simulation comparison, and a real data example is presented to illustrate the usefulness of the suggested methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed SE (2014) Penalty, shrinkage and pretest strategies: variable selection and estimation. Springer, New York

    Book  Google Scholar 

  • Ahmed SE, Doksum KA, Hossain S, You J (2007) Shrinkage, pretest and absolute penalty estimators in partially linear models. Aust N Z J Stat 49(4):435–454

    Article  MathSciNet  Google Scholar 

  • Amini M, Roozbeh M (2015) Optimal partial ridge estimation in restricted semi-parametric regression models. J Multivar Anal 136:26–40

    Article  Google Scholar 

  • Arashi M, Valizadeh T (2015) Performance of Kibria’s methods in partial linear ridge regression model. Stat Papers 56(1):231–246

    Article  MathSciNet  Google Scholar 

  • Aydın D (2014) Estimation of partially linear model with smoothing spline based on different selection methods: A comparative study. Pak J Stat 30:35–56

    MathSciNet  Google Scholar 

  • Belsley DA (1991) Conditioning diagnostics. Wiley, New York

    MATH  Google Scholar 

  • Engle RF, Granger CWJ, Rice CA, Weiss A (1986) Semi-parametric estimates of the relation between weather and electricity sales. J Am Stat Assoc 81:310–320

    Article  Google Scholar 

  • Eubank RL (1986) A note on smoothness priors and nonlinear regression. J Am Stat Assoc 81(394):514–517

    Article  MathSciNet  Google Scholar 

  • Eubank RL, Kambour EL, Kim TC, Kipple K, Reese SC, Schimek M (1998) Estimation in partially linear models. Comput Stat Data Anal 29:27–34

    Article  MathSciNet  Google Scholar 

  • Friendly M (2002) Corrgrams: exploratory displays for correlation matrices. Am Stat 56:316–324

    Article  MathSciNet  Google Scholar 

  • Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear model. Chapman & Hall, Boca Raton

    Book  Google Scholar 

  • Green PJ, Jennison C, Seheult A (1985) Analysis of field experiments by least square smoothing. J R Stat Soc B 47:299–315

    MathSciNet  Google Scholar 

  • Geyer CJ (1996) On the asymptotics of convex stochastic optimization. Unpublished manuscript

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models, vol 43. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12:69–82

    Article  Google Scholar 

  • Judge GG, Bock ME (1978) The statistical implications of pre-test and stein-rule estimators in econometrics. North Holland, Amsterdam

    MATH  Google Scholar 

  • Knight K, Fu W (2000) Asymptotics for Lasso-type estimators. Ann Stat 28(5):1356–1378

    Article  MathSciNet  Google Scholar 

  • Liang H (2006) Estimation partially linear models and numerical comparison. Comput Stat Data Anal 50:675–687

    Article  MathSciNet  Google Scholar 

  • Li J, Palta M (2009) Bandwidth selection through cross-validation for semi-parametric varying-coefficient partially linear models. J Stat Comput Simul 79:1277–1286

    Article  MathSciNet  Google Scholar 

  • Li J, Zhang W, Wu Z (2011) Optimal zone for bandwidth selection in semi-parametric models. J Nonparametr Stat 23(3):701–717

    Article  MathSciNet  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  • Raheem SE, Ahmed SE, Doksum KA (2012) Absolute penalty and shrinkage estimation in partially linear models. Comput Stat Data Anal 56(4):874–891

    Article  MathSciNet  Google Scholar 

  • Rice J (1986) Convergence rates for partially spline models. Stat Prob Lett 4:203–208

    Article  Google Scholar 

  • Roozbeh M (2015) Shrinkage ridge estimators in semi-parametric regression models. J Multivariate Anal 136:56–74

    Article  MathSciNet  Google Scholar 

  • Roozbeh M, Arashi M (2013) Feasible ridge estimator in partially linear models. J Multivariate Anal 116:35–44

    Article  MathSciNet  Google Scholar 

  • Schimek GM (2000) Estimation and inference in partially linear models with smoothing splines. J Stat Plann Inference 91(2):525–540

    Article  MathSciNet  Google Scholar 

  • Shiller RJ (1984) Smoothness priors and nonlinear regression. J Am Stat Assoc 79(387):609–615

    Article  MathSciNet  Google Scholar 

  • Speckman P (1988) Kernel smoothing in partially linear model. J R Stat Soc B 50:413–436

    MathSciNet  MATH  Google Scholar 

  • Yüzbaşı B, Ahmed SE (2016) Shrinkage and penalized estimation in semi-parametric models with multicollinear data. J Stat Comput Simul. https://doi.org/10.1080/00949655.2016.1171868

  • Wahba G (1990) Spline model for observational data. SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Wu J, Asar Y (2016) A weighted stochastic restricted ridge estimator in partially linear model. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2016.1206936

Download references

Acknowledgements

The authors thank the editor and two reviewers for their detailed reading of the manuscript and their valuable comments and suggestions that led to a considerable improvement of the paper. Research of Professor Bahadır Yüzbaşı is supported by The Scientific and Research Council of Turkey under grant Tubitak-Bideb-2214/A during this study at Brock University in Canada. Research of Professor S. Ejaz Ahmed is supported by the Natural Sciences and the Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahadır Yüzbaşı.

Appendix

Appendix

We present the following two lemmas below, which will enable us to derive the results of Theorems 1 and 3 in this paper

Lemma 1

If \(k/\sqrt{n}\rightarrow \lambda _{0}\ge 0\) and \(\varvec{ {\tilde{Q}}}\) is non-singular, then

$$\begin{aligned} \sqrt{n}\left( \widehat{\varvec{\beta }}^{\mathrm{FM}}-{\varvec{\beta }}\right) \overset{d}{\rightarrow }\mathcal {N}\left( -\lambda _{0} \varvec{{\tilde{Q}}}^{-1}{\varvec{\beta }}\text {, }\,\sigma ^{2} \varvec{{\tilde{Q}}}^{-1}\right) , \end{aligned}$$

where “\(\overset{d}{\rightarrow }\)” denotes convergence in distribution.

Proof

Let define \(V_n({{\mathbf {u}}})\) as follows:

$$\begin{aligned} \sum _{ i=1 }^{ n }{ \left[ { \left( {\tilde{\varepsilon }}_{ i }-{{\mathbf {u}}}'{\tilde{{{\mathbf {x}}}}}_{i}/\sqrt{ n } \right) }^{ 2 }-{\tilde{\varepsilon }}_{ i }^2 \right] +k\sum _{ j=1 }^{ p }{ \left[ { \left| \beta _j +u_j/\sqrt{ n } \right| }^{ 2 }-{ \left| \beta _j \right| }^{ 2 } \right] } }, \end{aligned}$$

where \({{\mathbf {u}}}=(u_1,\dots ,u_p)'\). Following Knight and Fu (2000), it can be shown that

$$\begin{aligned} \sum _{ i=1 }^{ n }{ \left[ { \left( {\tilde{\varepsilon }}_{ i }-{{\mathbf {u}}}'{\tilde{{{\mathbf {x}}}}}_{i}/\sqrt{ n } \right) }^{ 2 }-{\tilde{\varepsilon }}_{ i }^2 \right] } \overset{d}{\rightarrow } -2{{\mathbf {u}}}'{{\mathbf {D}}}+{{\mathbf {u}}}'\varvec{{\tilde{Q}}}{{\mathbf {u}}}, \end{aligned}$$

where \(\mathbf{D}\sim \mathcal {N}(\mathbf{0},\sigma ^2{{\mathbf {I}}}_p)\), with finite-dimensional convergence holding trivially. Hence,

$$\begin{aligned} k\sum _{ j=1 }^{ p }{ \left[ { \left| \beta _j +u_j/\sqrt{ n } \right| }^{ 2 }-{ \left| \beta _j \right| }^{ 2 } \right] } \overset{d}{\rightarrow } \lambda _{0}\sum _{ j=1 }^{ p }u_j \text{ sgn }(\beta _j)|\beta _j|. \end{aligned}$$

Hence, \(V_n({{\mathbf {u}}})\overset{d}{\rightarrow }V({{\mathbf {u}}})\). Because \(V_n\) is convex and V has a unique minimum, by following Geyer (1996), it yields

$$\begin{aligned} {\mathrm{arg\, min}}(V_n)= \sqrt{n}\left( \widehat{\varvec{\beta }}^{\mathrm{FM}}-{\varvec{\beta }}\right) \overset{d}{\rightarrow } {\mathrm{arg\, min}}(V). \end{aligned}$$

Hence,

$$\begin{aligned} \sqrt{n}\left( \widehat{\varvec{\beta }}^{\mathrm{FM}}-{\varvec{\beta }}\right) \overset{d}{\rightarrow } \varvec{{\tilde{Q}}}^{-1} \left( {{\mathbf {D}}}- \lambda _{0}{\varvec{\beta }}\right) {\sim }\mathcal {N}\left( -\lambda _{0} \varvec{{\tilde{Q}}}^{-1}{\varvec{\beta }}\text {, }\,\sigma ^{2} \varvec{{\tilde{Q}}}^{-1}\right) . \end{aligned}$$

\(\square \)

Lemma 2

Let \({{\mathbf {X}}}\) be \(q-\)dimensional normal vector distributed as \( \mathcal {N}\left( \varvec{\mu }_{x},\varvec{{\varSigma } } _{q}\right) \), then, for a measurable function of \(\varphi ,\) we have

$$\begin{aligned} \text {E}\,\left[ {{\mathbf {X}}}\varphi \left( {{\mathbf {X}}}'{{\mathbf {X}}}\right) \right]&=\varvec{\mu }_{x}\text {E}\,\left[ \varphi \chi _{q+2}^{2}\left( {\varDelta } \right) \right] \\ \text {E}\,\left[ {{\mathbf {X}}}{{\mathbf {X}}}'\varphi \left( {{\mathbf {X}}}' {{\mathbf {X}}}\right) \right]&=\varvec{{\varSigma } }_{q}\text {E}\,\left[ \varphi \chi _{q+2}^{2}\left( {\varDelta } \right) \right] +\varvec{\mu }_{x}\varvec{\mu }_{x}'\text {E}\,\left[ \varphi \chi _{q+4}^{2}\left( {\varDelta } \right) \right] \end{aligned}$$

where \(\chi _{v}^{2}\left( {\varDelta } \right) \) is a non-central chi-square distribution with v degrees of freedom and non-centrality parameter \({\varDelta }\).

Proof

It can be found in Judge and Bock (1978) \(\square \)

We further consider the following proposition for proving theorems.

Proposition 1

Under local alternative \(\left\{ K_{n}\right\} \) as \(n\rightarrow \infty \), we have

$$\begin{aligned}&\left( \begin{array}{c} \vartheta _{1} \\ \vartheta _{3} \end{array} \right) \sim \mathcal {N}\left[ \left( \begin{array}{c} -\varvec{\eta }_{11.2} \\ \varvec{\delta } \end{array} \right) ,\left( \begin{array}{cc} \sigma ^{2}\varvec{{\tilde{Q}}}_{11.2}^{-1} &{} \varvec{{\varPhi } }_{*} \\ \varvec{{\varPhi } }_{*} &{} \varvec{{\varPhi } }_{*} \end{array} \right) \right] ,\\&\left( \begin{array}{c} \vartheta _{3} \\ \vartheta _{2} \end{array} \right) \sim \mathcal {N}\left[ \left( \begin{array}{c} \varvec{\delta } \\ -\varvec{\xi } \end{array} \right) ,\left( \begin{array}{cc} \varvec{{\varPhi } }_{*} &{} \varvec{0} \\ \varvec{0} &{} \sigma ^{2}\varvec{{\tilde{Q}}}_{11}^{-1} \end{array} \right) \right] , \end{aligned}$$

where \(\vartheta _{1} =\sqrt{n}\left( \widehat{\varvec{\beta }}_{1}^{\mathrm{FM}}- {\varvec{\beta }}_{1}\right) \), \(\vartheta _{2} = \sqrt{n}\left( \widehat{\varvec{\beta }}_{1}^{\mathrm{SM}}- {\varvec{\beta }}_{1}\right) \) and \(\vartheta _{3}=\vartheta _{1}-\vartheta _{2}\).

Proof

Under the light of Lemmas 1 and 2, it can easily be obtained

$$\begin{aligned} \vartheta _{1} \overset{d}{\rightarrow }\mathcal {N}\left( -\varvec{\eta }_{11.2},\sigma ^{2}\varvec{{\tilde{Q}}} _{11.2}^{-1}\right) . \end{aligned}$$

Define \({{\mathbf {y}}}^{*}=\tilde{{{\mathbf {y}}}}-{\tilde{{{\mathbf {X}}}}}_{2}\widehat{\varvec{\beta }}_{2}^{\mathrm{FM}}\), and

$$\begin{aligned} \widehat{\varvec{\beta }}_{1}^{\mathrm{FM}}= & {} \underset{\varvec{\varvec{\beta }_{1}}}{\arg \min }\left\{ \left\| {{\mathbf {y}}}^{*}-{\tilde{{{\mathbf {X}}}}}_{1} {\varvec{\beta }}_{1}\right\| +k\left\| \varvec{\beta }_{1}\right\| ^{2}\right\} \nonumber \\= & {} \left( {\tilde{{{\mathbf {X}}}}}_{1}'{\tilde{{{\mathbf {X}}}}}_{1}+k {{\mathbf {I}}}_{p_{1}}\right) ^{-1}{\tilde{{{\mathbf {X}}}}}_{1}'{{\mathbf {y}}}^{*} \nonumber \\= & {} \left( {\tilde{{{\mathbf {X}}}}}_{1}'{\tilde{{{\mathbf {X}}}}}_{1}+k {{\mathbf {I}}}_{p_{1}}\right) ^{-1}{\tilde{{{\mathbf {X}}}}}_{1}'\tilde{{{\mathbf {y}}}} -\left( {\tilde{{{\mathbf {X}}}}}_{1}'{\tilde{{{\mathbf {X}}}}}_{1}+k{{\mathbf {I}}}_{{p}_{1}}\right) ^{-1}{\tilde{{{\mathbf {X}}}}}_{1}'{\tilde{{{\mathbf {X}}}}}_{2} \widehat{\varvec{\beta }}_{2}^{\mathrm{FM}} \nonumber \\= & {} \widehat{\varvec{\beta }}_{1}^{\mathrm{SM}}-\left( {\tilde{{{\mathbf {X}}}}}_{1}' {\tilde{{{\mathbf {X}}}}}_{1}+k{{\mathbf {I}}}_{p_{1}}\right) ^{-1} {\tilde{{{\mathbf {X}}}}}_{1}'{\tilde{{{\mathbf {X}}}}}_{2}\widehat{\varvec{\beta }}_{2}^{\mathrm{FM}}. \end{aligned}$$
(11)

By using Eq. (11),

$$\begin{aligned} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{SM}} -{\varvec{\beta }}_{1}\right) \right\}= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} +\varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}}_{12} \varvec{\widehat{\beta }}_{2}^{\mathrm{FM}} -\varvec{\beta }_{1}\right) \right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\beta }_{1}\right) \right\} \\&+\,\text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ {\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}}_{12}\varvec{\widehat{\beta }}_{2}^{\mathrm{FM}} \right) \right\} \end{aligned}$$

by Lemma 2,

$$\begin{aligned}= & {} -\varvec{\eta }_{11.2}+\varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}} _{12}\varvec{\omega } \\= & {} -\left( \varvec{\eta }_{11.2}-\varvec{\delta }\right) \\= & {} -\varvec{\xi }. \end{aligned}$$

Hence, \(\vartheta _{2} \overset{d}{\rightarrow }\mathcal {N}\left( -\varvec{\varvec{\xi }},\sigma ^{2}\varvec{{\tilde{Q}}}_{11}^{-1}\right) . \)

Using the Eq. (11), we can obtain \(\varvec{{\varPhi } }_{*}\) as follows:

$$\begin{aligned} \varvec{{\varPhi } }_{*}= & {} \text {Cov}\,\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}}- \widehat{\varvec{\beta }}_{1}^{\mathrm{SM}}\right) \\= & {} \text {E}\,\left[ \left( \widehat{\varvec{\beta }}_{1}^{\mathrm{FM}} -\widehat{\varvec{\beta }}_{1}^{\mathrm{SM}}\right) \left( \widehat{\varvec{\beta }}_{1}^{\mathrm{FM}}-\widehat{\varvec{\beta }}_{1}^{\mathrm{SM}}\right) '\right] \\= & {} \text {E}\,\left[ \left( \varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}}_{12}\varvec{ \widehat{\beta }}_{2}^{\mathrm{FM}}\right) \left( \varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}} _{12}\varvec{\widehat{\beta }}_{2}^{\mathrm{FM}}\right) '\right] \\= & {} \varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}}_{12}\text {E}\,\left[ \varvec{\widehat{\beta } }_{2}^{\mathrm{FM}}\left( \varvec{\widehat{\beta }}_{2}^{\mathrm{FM}}\right) '\right] \varvec{{\tilde{Q}}}_{21}\varvec{{\tilde{Q}}}_{11}^{-1} \\= & {} \sigma ^{2}\varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}}_{12}\varvec{{\tilde{Q}}} _{22.1}^{-1}\varvec{{\tilde{Q}}}_{21}\varvec{{\tilde{Q}}}_{11}^{-1} \text {.}\, \end{aligned}$$

We also know that

$$\begin{aligned} \varvec{{\varPhi } }_{*}= & {} \sigma ^{2}\varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}}_{12}\varvec{{\tilde{Q}}} _{22.1}^{-1}\varvec{{\tilde{Q}}}_{21}\varvec{{\tilde{Q}}}_{11}^{-1} = \sigma ^{2} \left( \varvec{{\tilde{Q}}}_{11.2}^{-1}- \varvec{{\tilde{Q}}}_{11}^{-1}\right) . \end{aligned}$$

Hence, it is obtained \(\vartheta _{3} \overset{d}{\rightarrow }\mathcal {N}\left( \varvec{\delta },\varvec{{\varPhi } }_{*}\right) .\)\(\square \)

Proof (Theorem 1)

\(\text {ADB}\,\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} \right) \) and \(\text {ADB}\,\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \) are directly obtained from Proposition 1. Also, the ADBs of PT, S and PS are obtained as follows:

$$\begin{aligned} \text {ADB}\,\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{PT}} \right)= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{PT}} -\varvec{\beta }_{1}\right) \right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} - \varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) -\varvec{\beta }_{1}\right) \right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\beta }_{1}\right) \right\} \\&-\text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right) \right\} \\= & {} -\varvec{\eta }_{11.2}-\varvec{\delta }\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) \text {.}\,\\ \text {ADB}\,\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{S}} \right)= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{S}} -\varvec{\beta } _{1}\right) \right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} - \varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \left( p_{2}-2\right) \mathcal {T}_{n}^{-1}-\varvec{\beta }_{1}\right) \right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\beta }_{1}\right) \right\} \\&-\text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right) \right\} \\= & {} -\varvec{\eta }_{11.2}-\left( p_{2}-2\right) \varvec{\delta } \text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right) \text {.}\, \\ \text {ADB}\,\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{PS}} \right)= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{PS}} -\varvec{\beta }_{1}\right) \right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{SM}} +\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{ \widehat{\beta }}_{1}^{\mathrm{SM}} \right) \right. \right. \\&\times \left. \left. \left( 1-\left( p_{2}-2\right) T _{n}^{-1}\right) \text {I}\,\left( \mathcal {T}_{n}>p_{2}-2\right) -\varvec{\beta }_{1}\right) \right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left[ \varvec{ \widehat{\beta }}_{1}^{\mathrm{SM}} +\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{ \widehat{\beta }}_{1}^{\mathrm{SM}} \right) \left( 1-\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right) \right. \right. \\&\left. \left. -\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\text {I}\,\left( \mathcal {T}_{n}>p_{2}-2\right) -\varvec{\beta }_{1}\right] \right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\beta }_{1}\right) \right\} \\&-\text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&-\text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\text {I}\,\left( \mathcal {T}_{n}>p_{2}-2\right) \right\} \\= & {} -\varvec{\eta }_{11.2}-\varvec{\delta }\text {H}\,_{p_{2}+2}\left( p_{2}-2;\left( {\varDelta } \right) \right) \\&-\,\varvec{\delta }\left( p_{2}-2\right) \text {E}\,\left\{ \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \text {I}\,\left( \chi _{p_{2+2}}^{2}\left( {\varDelta } \right) >p_{2}-2\right) \right\} \text {.}\, \end{aligned}$$

\(\square \)

The asymptotic covariance of an estimator \({\varvec{\beta }}_{1}^{*}\) is defined as follows:

$$\begin{aligned} \text {Cov}\, \left( {\varvec{\beta }}_{1}^{*} \right)= & {} \text {E}\,\left\{ \underset{ n\rightarrow \infty }{\lim }n\left( {\varvec{\beta }}_{1}^{*} -{\varvec{\beta }}_{1}\right) \left( {\varvec{\beta }}_{1}^{*} -\varvec{\beta }_{1}\right) '\right\} \text {.}\, \end{aligned}$$

Proof (Theorem 2)

Firstly, the asymptotic covariance of \(\varvec{\widehat{\beta }}_{1}^{\mathrm{FM}}\) is given by

$$\begin{aligned} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} \right)= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{\widehat{ \beta }}_{1}^{\mathrm{FM}} -\varvec{\beta }_{1}\right) \sqrt{n}\left( \varvec{\widehat{ \beta }}_{1}^{\mathrm{FM}} -\varvec{\beta }_{1}\right) '\right\} \\= & {} \text {E}\,\left( \vartheta _{1}\vartheta _{1}'\right) \\= & {} \text {Cov}\,\left( \vartheta _{1}\vartheta _{1}'\right) +\text {E}\,\left( \vartheta _{1}\right) \text {E}\,\left( \vartheta _{1}'\right) \\= & {} \sigma ^{2}\varvec{{\tilde{Q}}}_{11.2}^{-1}+\varvec{\eta }_{11.2}\varvec{ \eta }_{11.2}' \text {.}\, \end{aligned}$$

The asymptotic covariance of \(\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}}\) is given by

$$\begin{aligned} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right)= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{\widehat{\beta }} _{1}^{\mathrm{SM}} -\varvec{\beta }_{1}\right) \sqrt{n}\left( \varvec{\widehat{\beta }} _{1}^{\mathrm{SM}} -\varvec{\beta }_{1}\right) '\right\} \\= & {} \text {E}\,\left( \vartheta _{2}\vartheta _{2}'\right) \\= & {} \text {Cov}\,\left( \vartheta _{2}\vartheta _{2}'\right) +\text {E}\,\left( \vartheta _{2}\right) \text {E}\,\left( \vartheta _{2}'\right) \\= & {} \sigma ^{2}\varvec{{\tilde{Q}}}_{11}^{-1}+\varvec{\xi \xi }', \end{aligned}$$

The asymptotic covariance of \(\varvec{\widehat{\beta }}_{1}^{\mathrm{PT}}\) is given by

$$\begin{aligned} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{PT}} \right)= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{PT}} -\varvec{\beta }_{1}\right) \sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{PT}} -\varvec{\beta }_{1}\right) '\right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }n\left[ \left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\beta }_{1}\right) -\left( \varvec{\widehat{ \beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right] \right. \\&\left. \left[ \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -{\varvec{\beta }}_{1}\right) -\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{ \widehat{\beta }}_{1}^{\mathrm{SM}} \right) \text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right] '\right\} \\= & {} \text {E}\,\left\{ \left[ \vartheta _{1}-\vartheta _{3}\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right] \left[ \vartheta _{1}-\vartheta _{3}\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right] '\right\} \\= & {} \text {E}\,\left\{ \vartheta _{1}\vartheta _{1}'-2\vartheta _{3}\vartheta _{1}'\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) +\vartheta _{3}\vartheta _{3}'\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right\} \text {.}\, \end{aligned}$$

Now, by using Lemma 2 and the formula for a conditional mean of a bivariate normal, we have

$$\begin{aligned} \text {E}\,\left\{ \vartheta _{3}\vartheta _{1}'\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right\}= & {} \text {E}\,\left\{ \text {E}\,\left( \vartheta _{3}\vartheta _{1}'\text {I}\,\left( \mathcal {T} _{n}\le c_{n,\alpha }\right) |\vartheta _{3}\right) \right\} \\= & {} \text {E}\,\left\{ \vartheta _{3}\text {E}\,\left( \vartheta _{1}'\text {I}\,\left( \mathcal {T} _{n}\le c_{n,\alpha }\right) |\vartheta _{3}\right) \right\} \\= & {} \text {E}\,\left\{ \vartheta _{3}\left[ -\eta _{11.2}+\left( \vartheta _{3}- \varvec{\delta }\right) \right] '\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right\} \\= & {} -\text {E}\,\left\{ \vartheta _{3}\varvec{\eta }_{11.2}'\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right\} + \\&\text {E}\,\left\{ \vartheta _{3}\left( \vartheta _{3}-\varvec{\delta }\right) '\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right\} \\= & {} -\varvec{\eta }_{11.2}'\text {E}\,\left\{ \vartheta _{3}\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right\} \\&+\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\text {I}\,\left( \mathcal {T}_{n}\le c_{n,\alpha }\right) \right\} \\&-\,\text {E}\,\left\{ \vartheta _{3}\varvec{\delta }'\text {I}\,\left( \mathcal {T} _{n}\le c_{n,\alpha }\right) \right\} \\= & {} -\varvec{\eta }_{11.2}'\varvec{\delta }\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) +\left\{ \text {Cov}\,(\vartheta _{3}\vartheta _{3}')\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) \right. \\&\left. +\,\text {E}\,\left( \vartheta _{3}\right) \text {E}\,\left( \vartheta _{3}'\right) \text {H}\,_{p_{2}+4}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) - \varvec{\delta \delta }'\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) \right\} \\= & {} -\varvec{\eta }_{11.2}'\varvec{\delta }\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) +\varvec{{\varPhi } }_{*}\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) \\&+\,\varvec{\delta \delta }'\text {H}\,_{p_{2}+4}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) -\varvec{\delta \delta }'\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) , \end{aligned}$$

then,

$$\begin{aligned} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{PT}} \right)= & {} \varvec{\eta }_{11.2}\varvec{\eta }_{11.2}'+2\varvec{\eta }_{11.2}'\varvec{\delta }\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) \\&\sigma ^{2}\varvec{{\tilde{Q}}}_{11.2}^{-1}-\varvec{{\varPhi } }_{*}\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};\left( {\varDelta } \right) \right) - \varvec{\delta \delta }'\text {H}\,_{p_{2}+4}\left( \chi _{p_{2},\alpha }^{2}; {\varDelta } \right) \\&+\,2\varvec{\delta \delta }'\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2}; {\varDelta } \right) \\= & {} \sigma ^{2}\varvec{{\tilde{Q}}}_{11.2}^{-1}+\varvec{\eta }_{11.2}\varvec{ \eta }_{11.2}'+2\varvec{\eta }_{11.2}'\varvec{\delta } \text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) \\&+\,\sigma ^{2}\left( \varvec{{\tilde{Q}}}_{11.2}^{-1}- \varvec{{\tilde{Q}}}_{11}^{-1}\right) \text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2}; {\varDelta } \right) \\&+\,\varvec{\delta \delta }'\left[ 2\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) -\text {H}\,_{p_{2}+4}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) \right] . \end{aligned}$$

The asymptotic covariance of \(\widehat{\varvec{\beta }}_{1}^{\mathrm{S}}\) is given by

$$\begin{aligned} \text {Cov}\, \left( \widehat{\varvec{\beta }}_{1}^{\mathrm{S}}\right)= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{S}}-{\varvec{\beta }}_{1}\right) \sqrt{n}\left( \widehat{\varvec{\beta }}_{1}^{\mathrm{S}}-{\varvec{\beta }}_{1}\right) '\right\} \\= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }n\left[ \left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}}-{\varvec{\beta }}_{1}\right) -\left( \widehat{\varvec{\beta }}_{1}^{\mathrm{FM}}-\varvec{\widehat{\beta }} _{1}^{\mathrm{SM}}\right) \left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right] \right. \\&\left. \left[ \left( \widehat{\varvec{\beta }}_{1}^{\mathrm{FM}}-\varvec{ \beta }_{1}\right) -\left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}}-\varvec{ \widehat{\beta }}_{1}^{\mathrm{SM}}\right) \left( p_{2}-2\right) \mathcal {T}_{n}^{-1} \right] '\right\} \\= & {} \text {E}\,\left\{ \vartheta _{1}\vartheta _{1}'-2\left( p_{2}-2\right) \vartheta _{3}\vartheta _{1}'\mathcal {T}_{n}^{-1}+\left( p_{2}-2\right) ^{2}\vartheta _{3}\vartheta _{3}'\mathcal {T} _{n}^{-2}\right\} \text {.}\, \end{aligned}$$

Note that, by using Lemma 2 and the formula for a conditional mean of a bivariate normal, we have

$$\begin{aligned} \text {E}\,\left\{ \vartheta _{3}\vartheta _{1}'\mathcal {T}_{n}^{-1}\right\}= & {} \text {E}\,\left\{ \text {E}\,\left( \vartheta _{3}\vartheta _{1}'\mathcal {T} _{n}^{-1}|\vartheta _{3}\right) \right\} \\= & {} \text {E}\,\left\{ \vartheta _{3}\text {E}\,\left( \vartheta _{1}'\mathcal {T} _{n}^{-1}|\vartheta _{3}\right) \right\} \\= & {} \text {E}\,\left\{ \vartheta _{3}\left[ -\varvec{\eta }_{11.2}+\left( \vartheta _{3}-\varvec{\delta }\right) \right] '\mathcal {T} _{n}^{-1}\right\} \\= & {} -\text {E}\,\left\{ \vartheta _{3}\varvec{\eta }_{11.2}'\mathcal {T} _{n}^{-1}\right\} +\text {E}\,\left\{ \vartheta _{3}\left( \vartheta _{3}-\varvec{ \delta }\right) '\mathcal {T}_{n}^{-1}\right\} \\= & {} -\varvec{\eta }_{11.2}'\text {E}\,\left\{ \vartheta _{3}T _{n}^{-1}\right\} +\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\mathcal {T} _{n}^{-1}\right\} \\&-\,\text {E}\,\left\{ \vartheta _{3}\varvec{\delta }'\mathcal {T} _{n}^{-1}\right\} \\= & {} -\varvec{\eta }_{11.2}'\varvec{\delta }\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right) +\left\{ \text {Cov}\,(\vartheta _{3}\vartheta _{3}')\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right) \right. \\&\left. +\,\text {E}\,\left( \vartheta _{3}\right) \text {E}\,\left( \vartheta _{3}'\right) \text {E}\,\left( \chi _{p_{2}+4}^{-2}\left( {\varDelta } \right) \right) - \varvec{\delta \delta }'\text {H}\,_{p_{2}+2}\left( \chi _{p_{2},\alpha }^{2};{\varDelta } \right) \right\} \\= & {} -\varvec{\eta }_{11.2}'\varvec{\delta }\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right) +\varvec{{\varPhi } }_{*}\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right) \\&+\varvec{\delta \delta }'\text {E}\,\left( \chi _{p_{2}+4}^{-2}\left( {\varDelta } \right) \right) -\varvec{\delta \delta }'\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right) ,\\ \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{S}} \right)= & {} \sigma ^{2}\varvec{{\tilde{Q}}}_{11.2}^{-1}+\varvec{\eta }_{11.2}\varvec{ \eta }_{11.2}'+2\left( p_{2}-2\right) \varvec{\eta }_{11.2}' \varvec{\delta }\text {E}\,\left( \chi _{p_{2+2},\alpha }^{-2}\left( {\varDelta } \right) \right) \\&-\left( p_{2}-2\right) \varvec{{\varPhi } }_{*}\left\{ 2\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right) -\left( p_{2}-2\right) \text {E}\,\left( \chi _{p_{2+2}}^{-4}\left( {\varDelta } \right) \right) \right\} \\&+\left( p_{2}-2\right) \varvec{\delta \delta }'\left\{ -2\text {E}\,\left( \chi _{p_{2+4}}^{-2}\left( {\varDelta } \right) \right) +2\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right) \right. \\&\left. +\left( p_{2}-2\right) \text {E}\,\left( \chi _{p_{2+4}}^{-4}\left( {\varDelta } \right) \right) \right\} \text {.}\, \end{aligned}$$

Finally, the asymptotic covariance matrix of positive shrinkage ridge regression estimator is derived as follows:

$$\begin{aligned} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{PS}} \right)= & {} \text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }n\left( \varvec{\widehat{ \beta }}_{1}^{\mathrm{PS}} -\varvec{\beta }_{1}\right) \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{PS}} -\varvec{\beta }_{1}\right) '\right\} \\= & {} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{S}} \right) -2\text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left[ \left( \varvec{ \widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{S}} -\varvec{\beta }_{1}\right) '\right. \right. \\&\times \left. \left. \left\{ 1-\left( p_{2}-2\right) T _{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right] \right\} \\&+\,\text {E}\,\left\{ \underset{n\rightarrow \infty }{\lim }\sqrt{n}\left[ \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta }}_{1}^{\mathrm{SM}} \right) \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{FM}} -\varvec{\widehat{\beta } }_{1}^{\mathrm{SM}} \right) '\right. \right. \\&\times \left. \left. \left\{ 1-\left( p_{2}-2\right) T _{n}^{-1}\right\} ^{2}\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right] \right\} \\= & {} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{S}} \right) -2\text {E}\,\left\{ \vartheta _{3}\vartheta _{1}'\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&+\,2\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&-\,2\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\left( p_{2}-2\right) ^{2} \mathcal {T}_{n}^{-2}\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&+\,\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&-\,2\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&+\,\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\left( p_{2}-2\right) ^{2} \mathcal {T}_{n}^{-2}\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\= & {} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{S}} \right) -2\text {E}\,\left\{ \vartheta _{3}\vartheta _{1}'\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&-\,\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\left( p_{2}-2\right) ^{2} \mathcal {T}_{n}^{-2}\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&+\,\text {E}\,\left\{ \vartheta _{3}\vartheta _{3}'\text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \text {.}\, \end{aligned}$$

Based on Lemma 2 and the formula for a conditional mean of a bivariate normal, we have

$$\begin{aligned}&\text {E}\,\left\{ \vartheta _{3}\vartheta _{1}'\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&\quad =\text {E}\,\left\{ \text {E}\,\left( \vartheta _{3}\vartheta _{1}'\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) |\vartheta _{3}\right) \right\} \\&\quad =\text {E}\,\left\{ \vartheta _{3}\text {E}\,\left( \vartheta _{1}'\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) |\vartheta _{3}\right) \right\} \\&\quad =\text {E}\,\left\{ \vartheta _{3}\left[ -\varvec{\eta }_{11.2}+\left( \vartheta _{3}-\varvec{\delta }\right) \right] '\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right\} \\&\quad =-\varvec{\eta }_{11.2}\text {E}\,\left( \vartheta _{3}\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right) \\&\qquad +\,\text {E}\,\left( \vartheta _{3}\vartheta _{3}'\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right) \\&\qquad -\,\text {E}\,\left( \vartheta _{3}\varvec{\delta }'\left\{ 1-\left( p_{2}-2\right) \mathcal {T}_{n}^{-1}\right\} \text {I}\,\left( \mathcal {T}_{n}\le p_{2}-2\right) \right) \\&\quad =-\varvec{\delta \eta }_{11.2}'\varvec{E}\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\qquad +\,\varvec{{\varPhi } }_{*}\text {E}\,\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\qquad +\,\varvec{\delta \delta }'\text {E}\,\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2+4}}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2+4}}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\qquad -\,\varvec{\delta \delta }'\text {E}\,\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) , \end{aligned}$$
$$\begin{aligned} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{PS}} \right)= & {} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{S}} \right) +2\varvec{ \delta \eta }_{11.2}'\text {E}\,\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\quad -\,2\varvec{{\varPhi } }_{*}\text {E}\,\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\quad -\,2\varvec{\delta \delta }'\text {E}\,\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2}+4}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2}+4}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\quad +\,2\varvec{\delta \delta }'\text {E}\,\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\quad -\,\left( p_{2}-2\right) ^{2}\varvec{{\varPhi } }_{*}\text {E}\,\left( \chi _{p_{2}+2,\alpha }^{-4}\left( {\varDelta } \right) \text {I}\,\left( \chi _{p_{2}+2,\alpha }^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\quad -\,\left( p_{2}-2\right) ^{2}\varvec{\delta \delta }'\text {E}\,\left( \chi _{p_{2}+4}^{-4}\left( {\varDelta } \right) \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\quad +\,\varvec{{\varPhi } }_{*}\text {H}\,_{p_{2}+2}\left( p_{2}-2;{\varDelta } \right) +\,\varvec{\delta \delta }'\text {H}\,_{p_{2}+4}\left( p_{2}-2;{\varDelta } \right) \\= & {} \text {Cov}\, \left( \varvec{\widehat{\beta }}_{1}^{\mathrm{S}} \right) +2\varvec{ \delta \eta }_{11.2}'\text {E}\,\left( \left\{ 1-\left( p_{2}-2\right) \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \right\} \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\quad +\left( p_{2}-2\right) \sigma ^{2}\varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}} _{12}\varvec{{\tilde{Q}}}_{22.1}^{-1}\varvec{{\tilde{Q}}}_{21}\varvec{{\tilde{Q}}}_{11}^{-1} \\&\quad \times \left[ 2\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \right. \\&\quad \left. -\left( p_{2}-2\right) \text {E}\,\left( \chi _{p_{2}+2}^{-4}\left( {\varDelta } \right) \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \right] \\&\quad -\,\sigma ^{2}\varvec{{\tilde{Q}}}_{11}^{-1}\varvec{{\tilde{Q}}}_{12}\varvec{{\tilde{Q}}} _{22.1}^{-1}\varvec{{\tilde{Q}}}_{21}\varvec{{\tilde{Q}}}_{11}^{-1}\text {H}\,_{p_{2}+2}\left( p_{2}-2;{\varDelta } \right) \\&\quad +\,\varvec{\delta \delta }'\left[ 2\text {H}\,_{p_{2}+2}\left( p_{2}-2;{\varDelta } \right) -\text {H}\,_{p_{2}+4}\left( p_{2}-2;{\varDelta } \right) \right] \\&\quad -\left( p_{2}-2\right) \varvec{\delta \delta }'\left[ 2\text {E}\,\left( \chi _{p_{2}+2}^{-2}\left( {\varDelta } \right) \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \right. \\&\quad -2\text {E}\,\left( \chi _{p_{2}+4}^{-2}\left( {\varDelta } \right) \text {I}\,\left( \chi _{p_{2}+4}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \\&\quad \left. +\left( p_{2}-2\right) \text {E}\,\left( \chi _{p_{2}+2}^{-4}\left( {\varDelta } \right) \text {I}\,\left( \chi _{p_{2}+2}^{2}\left( {\varDelta } \right) \le p_{2}-2\right) \right) \right] . \end{aligned}$$

\(\square \)

Proof (Theorem 3)

The asymptotic risks of the estimators can be derived by following the definition of ADR

$$\begin{aligned} \text {ADR}\,\left( {\varvec{\beta }}_{1}^{*}\right)= & {} n\text {E}\,\left[ \left( {\varvec{\beta }}_{1}^{*}-{\varvec{\beta }}_{1}\right) ' \mathbf W \left( {\varvec{\beta }}_{1}^{*}-{\varvec{\beta }}_{1}\right) \right] \\ \nonumber= & {} n\text {tr}\,\left[ \mathbf W \text {E}\,\left( {\varvec{\beta }}_{1}^{*}- {\varvec{\beta }}_{1}\right) \left( {\varvec{\beta }}_{1}^{*}- {\varvec{\beta }}_{1}\right) '\right] \\= & {} \text {tr}\,\left( \mathbf W \text {Cov}\, \left( {\varvec{\beta }}_{1}^{*} \right) \right) . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüzbaşı, B., Ahmed, S.E. & Aydın, D. Ridge-type pretest and shrinkage estimations in partially linear models. Stat Papers 61, 869–898 (2020). https://doi.org/10.1007/s00362-017-0967-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0967-8

Keywords

Navigation