Skip to main content
Log in

Characterizations of the geometric distribution via residual lifetime

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this work, some characterizations of the geometric distribution based on two kinds of residual lifetime are presented. Firstly we characterize geometric distribution by using certain relationships of moments of the truncated life from below, that is \(\max \{X-t,0\}\), where X is a positive integer-valued random variable. Secondly using certain relationships of moments of residual life \(\gamma _{t}\) at t of a renewal process, we characterize the common distribution of the inter-arrival times \( \{X_{i},i\ge 1\}\) to be geometrically distributed when \(X_{1}\) is also a positive integer-valued random variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chong KM (1977) On characterizations of the exponential and geometric distributions by expectations. J Am Stat Assoc 72(357):160–161

    Article  MathSciNet  MATH  Google Scholar 

  • Çinlar E, Jagers P (1973) Two mean values which characterize the poisson process. J Appl Probab 10:678–681

    Article  MathSciNet  MATH  Google Scholar 

  • Dallas AC (1979) On the exponential law. Metrika 26(1):105–108

    Article  MathSciNet  MATH  Google Scholar 

  • Denuit M, Dhaene J, Goovaerts M, Kaas R (2006) Actuarial theory for dependent risks: measures, orders and models. John Wiley & Sons, New York

    Google Scholar 

  • Gupta PL, Gupta RC (1986) A characterization of the poisson process. J Appl Probab 23:233–235

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta RC (2006) Variance residual life function in reliability studies. Metron 54:343–345

    MathSciNet  Google Scholar 

  • Gupta RC, Kirmani SNUA (2000) Residual coefficient of variation and some characterization results. J Stat Plan Inference 91(1):23–31

    Article  MathSciNet  MATH  Google Scholar 

  • Henze N, Meintanis SG (2002) Goodness-of-fit tests based on a new characterization of the exponential distribution. Commun Stat Theory Methods 31(9):1479–1497

    Article  MathSciNet  MATH  Google Scholar 

  • Huang WJ, Chang WC (2000) On a study of the exponential and poisson characteristics of the poisson process. Metrika 50(3):247–254

    Article  MathSciNet  MATH  Google Scholar 

  • Huang WJ, Li SH (1993) Characterizations of the poisson process using, the variance. Commun Stat Theory Methods 22(5):1371–1382

    Article  MathSciNet  MATH  Google Scholar 

  • Huang WJ, Li SH, Su JC (1993) Some characterizations of the poisson process and geometric renewal process. J Appl Probab 30:121–130

    Article  MathSciNet  MATH  Google Scholar 

  • Huang WJ, Su NC (2012) Characterizations of distributions based on moments of residual life. Commun Stat Theory Methods 41(15):2750–2761

    Article  MathSciNet  MATH  Google Scholar 

  • Lin GD (2003) Characterizations of the exponential distribution via the residual lifetime. Sankhyā 65:249–258

    MathSciNet  MATH  Google Scholar 

  • Lukacs E (1965)haracterization problems for discrete distributions. Sankhyā, pp 231–240

  • Nair NU, Sankaran PG (2013) Characterizations of discrete distributions using reliability concepts in reversed time. Stat Probab Lett 83(9):1939–1945

    Article  MathSciNet  MATH  Google Scholar 

  • Nair NU, Sudheesh KK (2006) Characterization of continuous distributions by variance bound and its implications to reliability modeling and catastrophe theory. Commun Stat Theory Methods 35(7):1189–1199

    Article  MathSciNet  MATH  Google Scholar 

  • Nair NU, Sudheesh KK (2010) Characterization of continuous distributions by properties of conditional variance. Stat Methodol 7(1):30–40

    Article  MathSciNet  MATH  Google Scholar 

  • Navarro J, Franco M, Ruiz JM (1998) Characterization through moments of the residual life and conditional spacings. Sankhyā 60:36–48

    MathSciNet  MATH  Google Scholar 

  • Priya P, Sankaran PG, Nair NU (2000) Factorial partial moments and their properties. J Indian Stat Assoc 38:45–55

    MathSciNet  Google Scholar 

  • Rao CR, Shanbhag DN (1994) Choquet-Deny type functional equations with applications to stochastic models. Wiley, New York

    MATH  Google Scholar 

  • Roy D, Gupta RP (1999) Characterizations and model selections through reliability measures in the discrete case. Stat Probab Lett 43(2):197–206

    Article  MathSciNet  MATH  Google Scholar 

  • Shanbhag DN (1970) The characterizations for exponential and geometric distributions. J Am Stat Assoc 65(331):1256–1259

    Article  MATH  Google Scholar 

  • Su JC, Huang WJ (2000) Characterizations based on conditional expectations. Stat Pap 41(4):423–435

    Article  MathSciNet  MATH  Google Scholar 

  • Sudheesh KK, Nair NU (2010) Characterization of discrete distributions by conditional variance. Metron 68(1):77–85

    Article  MathSciNet  MATH  Google Scholar 

  • Xekalaki E (1983) Hazard functions and life distributions in discrete time. Commun Stat Theory Methods 12(21):2503–2509

    Article  MathSciNet  MATH  Google Scholar 

  • Xekalaki E, Dimaki C (2005) Identifying the pareto and yule distributions by properties of their reliability measures. J Stat Plan Inference 131(2):231–252

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the editor and anonymous reviewers for their suggestions and comments on an earlier version of this manuscript which led to this improved version. Support for this research was provided in part by the Ministry of Science and Technology, Taiwan, Grant No. 102-2118-M-305-003 and 104-2118-M-305-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Cheng Su.

Appendix

Appendix

For every \(n\in \mathcal {N}\), let \(\phi ^{\left( n\right) }(\theta )\) be the \(n^{th}\) derivative of \(\phi (\theta )\). However, we also denote \(\phi ^{\left( 0\right) }(\theta )=\phi (\theta )\), \(\phi ^{\left( 1\right) }(\theta )=\phi ^{\prime }(\theta ),\) \(\phi ^{\left( 2\right) }(\theta )=\phi ^{\prime \prime }(\theta )\) and \(\phi ^{\left( 3\right) }(\theta )=\phi ^{\prime \prime \prime }(\theta )\) for convenience. On the other hand, for q(t), \(\forall t\in \mathcal {N}\), we denote L(q(t)) the Laplace–Stieltjes transform of q(t), that is

$$\begin{aligned} L(q(t))=\sum _{t=0}^{\infty }e^{-\theta t}q(t),\quad \theta \ge 0. \end{aligned}$$

Now, for \(n\in \mathcal {N},\) define

$$\begin{aligned} q_{1}(t;n)= & {} \sum _{x\,=\,t+1}^{\infty }x^{n}P(X=x),\quad \forall t\in \mathcal {N}, \end{aligned}$$
(50)
$$\begin{aligned} q_{2}(t;n)= & {} t\sum _{x\,=\,t+1}^{\infty }x^{n}P(X=x),\quad \forall t\in \mathcal {N}, \end{aligned}$$
(51)
$$\begin{aligned} q_{3}(t;n)= & {} t^{2}\sum _{x\,=\,t+1}^{\infty }x^{n}P(X=x),\quad \forall t\in \mathcal { N}, \end{aligned}$$
(52)

and

$$\begin{aligned} q_{4}(t;n)=t^{3}\sum _{x=t+1}^{\infty }x^{n}P(X=x),\quad \forall t\in \mathcal {N}. \end{aligned}$$
(53)

In the following, we will calculate the Laplace–Stieltjes transforms of (50)–(53), respectively. These results are useful to characterize distribution in this work.

Lemma 2

$$\begin{aligned} L(q_{1}(t;n))=\frac{\mu _{n}-(-1)^{n}\phi ^{\left( n\right) }(\theta )}{ 1-e^{-\theta }},\quad \theta \ge 0. \end{aligned}$$

Proof

The proof is completed upon noting that

$$\begin{aligned} L(q_{1}(t;n))= & {} \sum _{t=0}^{\infty }e^{-\theta t}\left( \sum _{x=t+1}^{\infty }x^{n}P(X=x)\right) \\= & {} \sum _{x=1}^{\infty }\sum _{t=0}^{x-1}e^{-\theta t}x^{n}P(X=x) \\= & {} \sum _{x=1}^{\infty }\left( \frac{1-e^{-\theta x}}{1-e^{-\theta }}\right) x^{n}P(X=x) \\= & {} \frac{1}{1-e^{-\theta }}\left( \sum _{x=1}^{\infty }x^{n}P(X=x)-\sum _{x=1}^{\infty }e^{-\theta x}x^{n}P(X=x)\right) \end{aligned}$$

and

$$\begin{aligned} \phi ^{\left( n\right) }(\theta )=(-1)^{n}\sum _{x=1}^{\infty }e^{-\theta x}x^{n}P(X=x). \end{aligned}$$
(54)

\(\square \)

Lemma 3

$$\begin{aligned} L(q_{2}(t;n))=\frac{e^{-\theta }\mu _{n}-(-1)^{n}e^{-\theta }\phi ^{\left( n\right) }(\theta )+(-1)^{n}(1-e^{-\theta })\phi ^{\left( n+1\right) }(\theta )}{(1-e^{-\theta })^{2}},\quad \theta \ge 0. \end{aligned}$$

Proof

The proof is completed upon noting that

$$\begin{aligned} L(q_{2}(t;n))= & {} \sum _{t=0}^{\infty }e^{-\theta t}\left( t\sum _{x=t+1}^{\infty }x^{n}P(X=x)\right) \\= & {} \sum _{x=1}^{\infty }\left( \sum _{t=0}^{x-1}te^{-\theta t}\right) x^{n}P(X=x) \\= & {} \sum _{x=1}^{\infty }\left( \frac{e^{-\theta }-xe^{-\theta x}+(x-1)e^{-(x+1)\theta }}{(1-e^{-\theta })^{2}}\right) x^{n}P(X=x) \\= & {} \frac{1}{(1-e^{-\theta })^{2}}\left( \sum _{x=1}^{\infty }\left( e^{-\theta }{-}xe^{-\theta x}{+}xe^{-\theta x}e^{-\theta }{-}e^{-\theta x}e^{-\theta }\right) x^{n}P(X=x)\right) \\= & {} \frac{1}{(1-e^{-\theta })^{2}}\left( \sum _{x=1}^{\infty }\left( e^{-\theta }-(1-e^{-\theta })xe^{-\theta x}-e^{-\theta x}e^{-\theta }\right) x^{n}P(X=x)\right) \\= & {} \frac{1}{(1-e^{-\theta })^{2}}\left( e^{-\theta }\sum _{x=1}^{\infty }x^{n}P(X=x){-}(1-e^{-\theta })\sum _{x=1}^{\infty }e^{-\theta x}x^{n+1}P(X=x)\right. \\&\left. -e^{-\theta }\sum _{x=1}^{\infty }e^{-\theta x}x^{n}P(X=x)\right) \end{aligned}$$

and formula (54). \(\square \)

Lemma 4

$$\begin{aligned} L(q_{3}(t;n))= & {} \frac{1}{1-e^{-\theta }}\Big (\left. \mu _{n}-(-1)^{n}\phi ^{\left( n+2\right) }(\theta )-2(-1)^{n}\phi ^{\left( n+1\right) }(\theta )-(-1)^{n}\phi ^{\left( n\right) }(\theta )\right. \\&\left. +2L(q_{2}(t;n))-L(q_{1}(t;n))\right. \Big ),\quad \theta \ge 0. \end{aligned}$$

Proof

The proof is completed upon noting that

$$\begin{aligned}&L(q_{3}(t;n))=\sum _{t=0}^{\infty }e^{-\theta t}\left( t^{2}\sum _{x=t+1}^{\infty }x^{n}P(X=x)\right) \\&\quad =\sum _{x=1}^{\infty }\left( \sum _{t=0}^{x-1}t^{2}e^{-\theta t}\right) x^{n}P(X=x) \\&\quad =\sum _{x=1}^{\infty }\left( \frac{1-e^{-\theta x}(x-1)^{2}+\sum _{t=0}^{x-1}\left( 2t-1\right) e^{-\theta t}}{1-e^{-\theta }} \right) x^{n}P(X=x) \\&\quad =\frac{1}{1-e^{-\theta }}\left( \sum _{x=1}^{\infty }\left( 1-e^{-\theta x}(x-1)^{2}+2\sum _{t=0}^{x-1}te^{-\theta t}-\sum _{t=0}^{x-1}e^{-\theta t} \right) x^{n}P(X=x)\right) \\&\quad =\frac{1}{1-e^{-\theta }}\left( \sum _{x=1}^{\infty }x^{n}P(X=x)-\sum _{x=1}^{\infty }e^{-\theta x}(x-1)^{2}x^{n}P(X=x)\right. \\&\qquad +\left. 2\sum _{x=1}^{\infty }\sum _{t=0}^{x-1}te^{-\theta t}x^{n}P(X=x)-\sum _{x=1}^{\infty }\sum _{t=0}^{x-1}e^{-\theta t}x^{n}P(X=x)\right) \\&\quad =\frac{1}{1-e^{-\theta }}\left( \mu _{n}-\sum _{x=1}^{\infty }e^{-\theta x}(x-1)^{2}x^{n}P(X=x)+2L(q_{2}(t;n))-L(q_{1}(t;n))\right) \\&\quad =\frac{1}{1-e^{-\theta }}\left( \mu _{n}-\sum _{x=1}^{\infty }e^{-\theta x}x^{n+2}P(X=x)+2\sum _{x=1}^{\infty }e^{-\theta x}x^{n+1}P(X=x)\right. \\&\qquad -\left. \sum _{x=1}^{\infty }e^{-\theta x}x^{n}P(X=x)+2L(q_{2}(t;n))-L(q_{1}(t;n))\right) \\&\quad =\frac{1}{1-e^{-\theta }}\left( \mu _{n}-(-1)^{n+2}\phi ^{\left( n+2\right) }(\theta )+2(-1)^{n+1}\phi ^{\left( n+1\right) }(\theta )-(-1)^{n}\phi ^{\left( n\right) }(\theta )\right. \\&\qquad \left. +\,2L(q_{2}(t;n))-L(q_{1}(t;n))\right) \end{aligned}$$

and formula (54). \(\square \)

Remark 5

In particular, by Lemmas 2 and 3, we have that if \(n=0,\) then

$$\begin{aligned} L(q_{3}(t;0))= & {} \frac{e^{-\theta }\left( 1+e^{-\theta }\right) }{(1-e^{-\theta })^{3}}-\frac{e^{-\theta }\left( 1+e^{-\theta }\right) }{(1-e^{-\theta })^{3} }\phi (\theta )\\&+\frac{2e^{-\theta }}{(1-e^{-\theta })^{2}}\phi ^{\prime }(\theta )-\frac{1}{1-e^{-\theta }}\phi ^{\prime \prime }(\theta ); \end{aligned}$$

if \(n=1,\) then

$$\begin{aligned} L(q_{3}(t;1))= & {} \frac{\mu _{1}e^{-\theta }\left( 1+e^{-\theta }\right) }{ (1-e^{-\theta })^{3}}+\frac{e^{-\theta }\left( 1+e^{-\theta }\right) }{ (1-e^{-\theta })^{3}}\phi ^{\prime }(\theta )\\&-\frac{2e^{-\theta }}{ (1-e^{-\theta })^{2}}\phi ^{\prime \prime }(\theta )+\frac{1}{1-e^{-\theta }} \phi ^{\prime \prime \prime }(\theta ). \end{aligned}$$

Lemma 5

$$\begin{aligned} L(q_{4}(t;n))= & {} \frac{1}{1-e^{-\theta }}\left( -\mu _{n}+(-1)^{n}\phi ^{\left( n+3\right) }(\theta )\right. \\&+3(-1)^{n}\phi ^{\left( n+2\right) }(\theta )+3(-1)^{n}\phi ^{\left( n+1\right) }(\theta )\\&\left. +(-1)^{n}\phi ^{\left( n\right) }(\theta )+3L(q_{3}(t;n))-3L(q_{2}(t;n))+L(q_{1}(t;n))\right) ,\quad \theta \ge 0. \end{aligned}$$

Proof

The proof is completed upon noting that

$$\begin{aligned} L(q_{4}(t;n))= & {} \sum _{t=0}^{\infty }e^{-\theta t}\left( t^{3}\sum _{x=t+1}^{\infty }x^{n}P(X=x)\right) \\= & {} \sum _{x=1}^{\infty }\left( \sum _{t=0}^{x-1}t^{3}e^{-\theta t}\right) x^{n}P(X=x) \\= & {} \sum _{x=1}^{\infty }\left( \frac{-1-\left( x-1\right) ^{3}e^{-\theta x}+\sum _{t=0}^{x-1}\left( 3t^{2}-3t+1\right) e^{-\theta t}}{1-e^{-\theta }} \right) x^{n}P(X=x) \\= & {} \sum _{x=1}^{\infty }\left( \frac{-1-(x^{3}-3x^{2}+3x-1)e^{-\theta x}+\sum _{t=0}^{x-1}(3t^{2}-3t+1)e^{-\theta t}}{1-e^{-\theta }}\right) x^{n}P(X=x) \\= & {} \frac{1}{1-e^{-\theta }}\left( -\mu _{n}-(-1)^{n+3}\phi ^{\left( n+3\right) }(\theta )+3(-1)^{n+2}\phi ^{\left( n+2\right) }(\theta )-3(-1)^{n+1}\phi ^{\left( n+1\right) }(\theta )\right. \\&\left. +(-1)^{n}\phi ^{\left( n\right) }(\theta )+3L(q_{3}(t;n))-3L(q_{2}(t;n))+L(q_{1}(t;n))\right) \end{aligned}$$

and formula (54). \(\square \)

Remark 6

In particular, by Lemmas 2 and 4, we have that if \(n=0,\) then

$$\begin{aligned} L(q_{4}(t;0))= & {} \frac{e^{-\theta }(1+4e^{-\theta }+e^{-2\theta })}{ (1-e^{-\theta })^{4}}-\frac{e^{-\theta }(1+4e^{-\theta }+e^{-2\theta })}{ (1-e^{-\theta })^{4}}\phi (\theta ) \\&+\frac{3e^{-\theta }(1+e^{-\theta })}{(1-e^{-\theta })^{3}}\phi ^{\prime }(\theta )-\frac{3e^{-\theta }}{(1-e^{-\theta })^{2}}\phi ^{\prime \prime }(\theta )+\frac{1}{(1-e^{-\theta })}\phi ^{\prime \prime \prime }(\theta ) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, NC., Hung, WP. Characterizations of the geometric distribution via residual lifetime. Stat Papers 59, 57–73 (2018). https://doi.org/10.1007/s00362-016-0751-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0751-1

Keywords

Mathematics Subject Classification

Navigation