Skip to main content
Log in

An atlas of plasma-accessible carbonic anhydrase availability in the model teleost, the rainbow trout

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The unique teleost oxygenation system that permits enhanced oxygen unloading during stress comprises three main characteristics: pH-sensitive haemoglobin, red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of plasma-accessible carbonic anhydrase (paCA). A heterogeneous distribution of paCA is essential; its presence permits enhanced oxygen unloading during stress, while its absence at the gills maintains conditions for oxygen uptake by pH-sensitive haemoglobins. We hypothesised that paCA would be absent in all four gill arches, as has been previously indicated for arch two, and that paCA would be present in all other tissues. Through a suite of biochemical and molecular methods, we confirmed the absence of paCA from all four arches. We also found evidence for paCA in nine other tissues and a lack of paCA availability in the stomach. Expression was highly variable between tissues and suggests these differences may be associated with their respective metabolic activities. Additionally, we analysed the specific CA-IV isoform expressed within each tissue and showed almost complete separation of expression between tissues; CA-IVa was detected in the heart, brain, anterior intestine, and liver, whereas CA-IVb was detected in all intestine sections, pyloric caeca, kidney, and white muscle. This adds to a growing collection of work suggesting CA-IVa and b play divergent roles in gas exchange and ion/acid–base balance, respectively. The current study represents the first comprehensive atlas of paCA availability within the circulatory system of the model teleost, rainbow trout, and fills important gaps in our knowledge of this unique oxygenation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available in supplementary materials.

Abbreviations

β-NHE:

Beta-adrenergically stimulated sodium proton exchanger

CA:

Carbonic anhydrase

CA-IV:

Carbonic anhydrase IV

cDNA:

Complementary deoxyribonucleic acid

CO2 :

Carbon dioxide

GPI:

Glycophosphatidylinositol anchor

Hb:

Haemoglobin

HCO3 :

Bicarbonate

mRNA:

Messenger ribonucleic acid

O2 :

Oxygen

paCA:

Plasma-accessible carbonic anhydrase

PCO2 :

Partial pressure of carbon dioxide

pHe:

Extracellular pH

pHi:

Intracellular pH

PI-PLC:

Phosphatidylinositol specific phospholipase C

PICA:

Plasma inhibitors of carbonic anhydrase

qPCR:

Quantitative polymerase chain reaction

RBC:

Red blood cell

SDS:

Sodium dodecyl sulphate

t1/2 :

Half-time

References

  • Agarwal T, Singla RK, Garg A (2019) Carbonic anhydrases and their physiological roles. MOL2NET. https://doi.org/10.3390/mol2net-05-06764

    Article  Google Scholar 

  • Alderman S, Harter TS, Wilson JM, Supuran CT, Farrell AP, Brauner CJ (2016) Evidence for a plasma-accessible carbonic anhydrase in the lumen of salmon heart that may enhance oxygen delivery to the myocardium. J Exp Biol 219:719–724

    Article  PubMed  Google Scholar 

  • Berenbrink M (2007) Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes. J Exp Biol 209:1641–1652

    Article  Google Scholar 

  • Berenbrink M (2011) Transport and exchange of respiratory gases in the blood: Evolution of the Bohr Effect. In: Farrell AP (ed) Encyclopedia of fish physiology. Elsevier, Amsterdam

    Google Scholar 

  • Berenbrink M, Koldkjaer P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757

    Article  CAS  PubMed  Google Scholar 

  • Bohr C, Hasselbalch K, Krogh A (1904) About a new biological relation of high importance that the blood carbonic acid tension exercises on its oxygen binding. Skandinavisches Archiv Fur Physiologie 16:402–412

    Article  Google Scholar 

  • Chegwidden WR, Carter ND (2000) The carbonic anhydrases. New Horizons. Birkhäuser Basel, Basel

    Book  Google Scholar 

  • Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Revs 83:1183–1121

    Article  CAS  Google Scholar 

  • Cooper CA, Wilson RW (2008) Post-prandial alkaline tide in freshwater rainbow trout: effects of meal anticipation on recovery from acid–base and ion regulatory disturbances. J Exp Biol 211:2542–2550

    Article  CAS  PubMed  Google Scholar 

  • Damsgaard C, Lauridsen H, Harter TS, Kwan GT, Thomsen JS, Funder AMD, Supuran CP, Tresguerres M, Matthews PDG, Brauner CJ (2020) A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina. Elife. https://doi.org/10.7554/eLife.58995

    Article  PubMed  PubMed Central  Google Scholar 

  • Dichiera AM (2021) Carbonic anhydrase function and evolution in the respiratory gas exchange system of marine fish. PhD Thesis, University of Texas, Austin, TX.

  • Dimberg K (1994) The carbonic anhydrase inhibitor in trout plasma: purification and its effect on carbonic anhydrase activity and the Root effect. Fish Physiol Biochem 12:381–386

    Article  CAS  PubMed  Google Scholar 

  • Dussault ÈB, Playle RC, Dixon DG, McKinley RS (2008) Effects of soft-water acclimarion on the physiology, swimming performance, and cardiac parameters of the rainbow trout. Oncorhynchus Mykiss Fish Physiol Biochem 34:313–322

    Article  CAS  PubMed  Google Scholar 

  • Fleming RE, Parkkila S, Parkkila A-K, Rajaniemi H, Waheed A, Sly WM (1995) Carbonic anhydrase IV expression in rat and human gastrointestinal tract. Regional, cellular, and subcellular localization. J Clin Invest 96:2907–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgalis T, Gilmour KM, Yorston J, Perry SF (2006) Roles of cytosolic and membrane-bound carbonic anhydrase in renal control of acid-base balance in rainbow trout, Oncorhynchus mykiss. Am J Physiol Ren Physiol 291:F407–F421

    Article  CAS  Google Scholar 

  • Ghandour MS, Langley OK, Zhu XL, Waheed A, Sly WS (1992) Carbonic anhydrase IV on brain capillary endothelial cells: a marker associated with the blood-brain barrier. PNAS 89:6823–6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour KM (2010) Perspectives on carbonic anhydrase. Comp Biochem Physiol A 157:193–197

    Article  CAS  Google Scholar 

  • Grosell M, Gilmour KM, Perry SF (2007) Intestinal carbonic anhydrase, bicarbonate, and proton carriers play a role in the acclimation of rainbow trout to seawater. Am J Physiol Regul Integr Comp Physiol 293:R2099–R2111

    Article  CAS  PubMed  Google Scholar 

  • Grosell M, Mager EM, Williams C, Taylor JR (2009) High rates of HCO3- secretion and Cl- absorption against adverse gradients in the marine teleost intestine: the involvement of an electrogenic anion exchanger and H+-pump metabolon? J Exp Biol 212:1684–1696

    Article  CAS  PubMed  Google Scholar 

  • Harter TS, Brauner CJ (2017) The O2 and CO2 transport system in teleosts and the specialized mechanisms that enhance Hb-O2 unloading to tissues. In: Gamperl AK, Gillis TE, Farrell AP, Brauner CJ (eds) The cardiovascular system: development, plasticity and physiological responses. Fish Physiology, vol 36B. Academic Press, San Diego, pp 1–106

    Google Scholar 

  • Harter TS, Sackville MA, Wilson JM, Metzger DCH, Egginton S, Esbaugh AJ, Farrell AP, Brauner CJ (2018a) A solution to Nature’s haemoglobin knockout: a plasma-accessible carbonic anhydrase catalyses CO2 excretion in Antarctic icefish gills. J Exp Biol. https://doi.org/10.1242/jeb.190918

    Article  PubMed  Google Scholar 

  • Harter TS, May AG, Federspiel WJ, Supuran CJ, Brauner CJ (2018b) Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 315:397–407

    Article  Google Scholar 

  • Harter TS, Zanuzzo FS, Supuran CT, Gamperl AK, Brauner CJ (2019) Functional support for a novel mechanism that enhances tissue oxygen extraction in a teleost fish. Proc R Soc B. https://doi.org/10.1098/rspb.2019.0339

    Book  Google Scholar 

  • Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology. Wiley, New York

    Google Scholar 

  • Heming TA, Stabenau EK, Vanoye CG, Moghadasi H, Bidani A (1994) Roles of intra- and extracellular carbonic anhydrase in alveolar-capillary CO2 equilibrium. J App Physiol 77:697–705

    Article  CAS  Google Scholar 

  • Heming TA (1984) The role of fish erythrocytes in transport and excretion of carbon dioxide. PhD thesis, Department of Zoology, University of British Columbia.

  • Henry RP (1988) Multiple functions of carbonic anhydrase in the crustacean gill. J Exp Zool 248:19–24

    Article  CAS  Google Scholar 

  • Henry RP (1991) Techniques for Measuring Carbonic Anhydrase Activity in Vitro. In: Dodgson SJ, Tashian RE, Gros G, Carter ND (eds) The Carbonic Anhydrases. Springer, Berlin

    Google Scholar 

  • Henry RP, Swenson ER (2000) The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs. Resp Physiol 121:1–12

    Article  CAS  Google Scholar 

  • Henry RP, Tufts BL, Boutilier RG (1993) The distribution of carbonic anhydrase type I and II isozymes in lamprey and trout: possible co-evolution with erythrocyte chloride/bicarbonate exchange. J Comp Physiol B 163:380–388

    Article  CAS  Google Scholar 

  • Henry RP, Wang Y, Wood CM (1997a) Carbonic anhydrase facilitates CO2 and NH3 transport across the sarcolemma of trout white muscle. Am J Physiol Regul Integr Comp Physiol 272:R1754–R1761

    Article  CAS  Google Scholar 

  • Henry RP, Gilmour KM, Wood CM, Perry SF (1997b) Extracellular carbonic anhydrase activity and carbonic anhydrase inhibitors in the circulatory system of fish. Physiol Zool 70:650–659

    Article  CAS  PubMed  Google Scholar 

  • Ilves KL, Randall DJ (2007) Why have primitive fishes survived? In: McKenzie DJ, Brauner CJ, Farrell AP (eds) Primitive Fishes (Fish Physiology), vol 26. Academic Press, San Diego, pp 516–536

    Google Scholar 

  • Jones HC (1979) Comparative aspects of the cerebrospinal fluid systems in vertebrates. Sci Prog 66:171–190

    CAS  PubMed  Google Scholar 

  • Kieffer JD, Rossiter AM, Kieffer CA, Davidson K, Tufts BL (2002) Physiology and survival of Atlantic salmon following exhaustive exercise in hard and softer water: implications for the catch-and-release sport fishery. North Am J Fish Manag 22:132–144

    Article  Google Scholar 

  • Kivelä AJ, Kivelä J, Saarnio J, Parkkila S (2005) Carbonic anhydrases in normal gastrointestinal tract and gastrointestinal tumours. World J Gastroenterol 11:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Koldkjær P, Pottinger TG, Perry SF, Cossins AR (2004) Seasonality of the red blood cell stress response in rainbow trout (Oncorhynchus mykiss). J Exp Biol 207:357–367

    Article  PubMed  Google Scholar 

  • Lin TY, Liao BK, Horng JL, Yan JJ, Hsiao CD, Hwang PP (2008) Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 294:C1250–C1260

    Article  CAS  PubMed  Google Scholar 

  • Lönnerholm G (1983) Carbonic anhydrase in the monkey stomach and intestine. Acta Physiol Scand 117:273–279

    Article  PubMed  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Revs 47:595–781

    Article  CAS  Google Scholar 

  • McMillan OJL, Dichiera AM, Harter TS, Wilson JM, Esbaugh AJ, Brauner CJ (2019) Blood and gill carbonic anhydrase in the context of a Chondrichthyan model of CO2 excretion. Physiol Biochem Zool. https://doi.org/10.1086/705402

    Article  PubMed  Google Scholar 

  • Meldrum NU, Roughton FJW (1933) Carbonic anhydrase. its preparation and properties. J Physiol 80:113–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison PR, Gilmour KM, Brauner CJ (2016) Oxygen and carbon dioxide transport in elasmobranchs. In: Shadwick R, Farrell AP, Brauner CJ (eds) Fish Physiology. Physiology of Elasmobranch Fishes: Internal Processes, vol 34B. Elsevier, New York, pp 128–219

    Google Scholar 

  • Nikinmaa M (1982) Effects of adrenaline on red cell volume and concentration gradient of protons across the red cell membrane in the rainbow trout, Salmo gairdneri. Mol Physiol 2:287–297

    CAS  Google Scholar 

  • Nikinmaa M (1986) Control of red cell pH in teleost fishes. Ann Zool Fennici 23:223–235

    Google Scholar 

  • Nikinmaa M (1990) Vertebrate red cells: adaptations of function to respiratory requirements. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Nikinmaa M (1992) Membrane transport and control of hemoglobin–oxygen affinity in nucleated erythrocytes. Physiol Revs 72:301–321

    Article  CAS  Google Scholar 

  • Niv Y, Fraser GM (2002) The alkaline tide phenomenon. J Clin Gastroenterol 35:5–8

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Kinkead R (1989) The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri). Respir Physiol 77:365–377

    Article  CAS  PubMed  Google Scholar 

  • Peters T, Papadopoulos F, Kubis H-P, Gros G (2000) Properties of a carbonic anhydrase inhibitor in flounder serum. J Exp Biol 203:3003–3009

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. https://doi.org/10.1093/nar/29.9.e45

    Article  PubMed  PubMed Central  Google Scholar 

  • Purkerson JM, Swartz GJ (2005) Expression of membrane-association carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation. Am J Physiol Regul Integr Comp Physiol 288:R1256–R1263

    Article  CAS  PubMed  Google Scholar 

  • Randall DJ, Rummer JL, Wilson JM, Wang S, Brauner CJ (2014) A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes. J Exp Biol 217:1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Ravi V, Venkatesh B (2018) The divergent genomes of teleosts. Annu Rev Anim Biosci 6:47–68

    Article  CAS  PubMed  Google Scholar 

  • Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull 61:427–456

    Article  CAS  Google Scholar 

  • Roush ED, Fierke CA (1992) Purification and characterisation of a carbonic anhydrase-II inhibitor from porcine plasma. Biochem 31:12536–12542

    Article  CAS  Google Scholar 

  • Rummer JL, Brauner CJ (2011) Plasma-accessible carbonic anhydrase at the tissue of a teleost fish may greatly enhance oxygen delivery: in vitro evidence in rainbow trout, Oncorhynchus mykiss. J Exp Biol 214:2319–2328

    Article  CAS  PubMed  Google Scholar 

  • Rummer JL, McKenzie DJ, Innocenti A, Supuran CT, Brauner CJ (2013) Root effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Science 340:1327–1329

    Article  CAS  PubMed  Google Scholar 

  • Shu JJ, Harter TS, Morrison PR, Brauner CJ (2018) Enhanced hemoglobin–oxygen unloading in migratory salmonids. J Comp Physiol B 188:409–419

    Article  CAS  PubMed  Google Scholar 

  • Stabenau EK, Bidani A, Heming TA (1996) Physiological characterisation of pulmonary carbonic anhydrase in the turtle. Respir Physiol 104:187–196

    Article  CAS  PubMed  Google Scholar 

  • Stadie WC, O’Brien H (1933) The catalysis of the hydration of carbon dioxide and the dehydration of carbonic acid by an enzyme isolated from red blood cells. J Biol Chem 103:521–529

    Article  CAS  Google Scholar 

  • Svichar N, Chesler M (2003) Surface carbonic anhydrase activity on astrocytes and neurons facilitates lactate transport. Glia 41:415–419

    Article  PubMed  Google Scholar 

  • Svichar N, Esquenazi S, Waheed A, Sly WS, Chesler M (2005) Functional demonstration of surface carbonic anhydrase IV activity on rat astrocytes. Glia 53:241–247

    Article  Google Scholar 

  • Thorarensen H, Gallaugher PE, Kiessling AK, Farrell AP (1993) Intestinal blood flow in swimming chinook salmon Oncorhynchus tshawytscha and the effects of hematocrit on blood flow distribution. J Exp Biol 179:115–129

    Article  Google Scholar 

  • Wang Y, Henry RP, Wright PM, Heigenhauser GJF, Wood CM (1998) Respiratory and metabolic functions of carbonic anhydrase in exercised white muscle of trout. Am J Physiol–Regul Integr Comp Physiol 275:1766–1779

    Article  Google Scholar 

  • Waheed A, Okuyama T, Heyduk T, Sly WS (1996) Carbonic anhydrase IV: purification of a secretory form of the recombinant human enzyme and identification of the positions and importance of its disulfide bonds. Arch Biochem Biophys 333:432–438

    Article  CAS  PubMed  Google Scholar 

  • Whitney PL, Briggle TV (1982) Membrane-associated carbonic anhydrase purified from bovine lung. J Biol Chem 257:12056–12059

    Article  CAS  PubMed  Google Scholar 

  • Wilson RW, Wilson JM, Grosell M (2002) Intestinal bicarbonate secretion by marine teleost fish—why and how? Biochem Biophys Acta 1566:182–193

    Article  CAS  PubMed  Google Scholar 

  • Wood CM (1991) Acid-base and ion balance, metabolism, and their interactions, after exhaustive exercise in fish. J Exp Biol 160:285–308

    Article  CAS  Google Scholar 

  • Wootton RJ (1990) Ecology of teleost fishes. Champman and Hall. Springer, Berlin

    Google Scholar 

Download references

Funding

This study was supported by a Natural Sciences and Engineering Research Council (NSERC) Discovery grant (RGPIN-2018-04172).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: C. Nelson and C. J. Brauner; data collection: C. Nelson, E. H. Jung, and A. M. Dichiera; analysis and interpretation of results: C. Nelson, A. M. Dichiera, and C. J. Brauner; draft manuscript preparation: C. Nelson. All authors reviewed the results and approved the final version of the manuscript. We would like to acknowledge and thank Benjamin Mills for creating the illustrations used in Fig. 4 of this manuscript.

Corresponding author

Correspondence to Charlotte Nelson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by B. Pelster.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Summary Statement

In this study we developed an atlas of plasma accessible carbonic anhydrase availability in rainbow trout, filling gaps in our knowledge of how the unique teleost respiratory system functions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 75 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, C., Dichiera, A.M., Jung, E.H. et al. An atlas of plasma-accessible carbonic anhydrase availability in the model teleost, the rainbow trout. J Comp Physiol B 193, 293–305 (2023). https://doi.org/10.1007/s00360-023-01484-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-023-01484-7

Keywords

Navigation