Skip to main content
Log in

Prejuveniles of Mugil liza (Actinopterygii; Fam. Mugilidae) show digestive and metabolic flexibility upon different postprandial times and refeeding

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

A Correction to this article was published on 10 June 2022

This article has been updated

Abstract

Many animals face periods of feeding restrictions implying fasting and refeeding. The determination of digestive/metabolic and body condition parameters at different times of food deprivation and after refeeding allows to evaluate the postprandial dynamics, the transition from feeding to fasting and the capacity to reverse digestive and metabolic alterations. In spite of its physiological importance, studies on estuarine-dependent detritivore fish are lacking. We determined total mass (TM), relative intestine length (RIL), hepatosomatic index (HSI), digestive enzymes activities in the intestine and energy reserves in liver and muscle at 0, 24, 72, 144 and 240 h after feeding and at 72 h after refeeding in prejuveniles of Mugil liza (Mugilidae) as a model species. After feeding, a decrease occurred in: TM (144 h, 25%), RIL (144 h, 23%); amylase and maltase (72 h, 45 and 35%), sucrase (24 h, 40%) and lipase (24 h, 70%) in intestine; glycogen and free glucose (72 h, 90 and 92%) in liver. In muscle, glycogen (72–144 h) and free glucose (144 h) (170% and 165%, respectively) peak increased; triglycerides decreased at 24–240 h (50%). After refeeding TM, RIL, carbohydrases activities in intestine, glycogen and free glucose in liver were recovered. In muscle, glycogen and free glucose were similar to 0 h; lipase activity and triglycerides were not recovered. Trypsin and APN in intestine, triglycerides in liver, protein in liver and muscle and HSI did not change. The differential modulation of key components of carbohydrates and lipid metabolism after feeding/refeeding would allow to face fasting and recover body condition. Our results improve lacking knowledge about digestive and metabolic physiology of detritivore fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Abbreviations

MCh:

Mar Chiquita Coastal Lagoon

TL:

Total length

ST:

Standard length

TM:

Total mass

HSI:

Hepatosomatic index

RIL:

Relative intestine length

AMS:

Amylase

MAL:

Maltase

SUC:

Sucrase

LIP:

Lipase

TRY:

Trypsin

APN:

N-Aminopeptidase

GLY:

Glycogen

GLU:

Free glucose

TAG:

Triglycerides

PROT:

Protein

RF:

Refeeding

References

  • Abdel-Tawwab M & Monier MN (2018) Stimulatory effect of dietary taurine on growth performance, digestive enzymes activity, antioxidant capacity, and tolerance of common carp, Cyprinus carpio L. fry to salinity stress. Fish Physiol Biochem 44(2): 639–649

  • Abolfathi M, Hajimoradloo A, Ghorbani R, Zamani A (2012) Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp Biochem Physiol Part A Mol Integr Physiol 161(2):166–173

    Article  CAS  Google Scholar 

  • Albanesi C, González Castro M, López Mañanes A (2021a) Understanding the early ontogenetic stages of Mugil liza (Mugilidae): morphological traits and digestive/metabolic profile of pre-juveniles after recruitment. J Fish Biol 98:643–654. https://doi.org/10.1111/jfb.14605

    Article  CAS  PubMed  Google Scholar 

  • Albanesi C, Radonic M, López A, López Mañanes AA (2021b) Phenotypic flexibility in juvenile flounder Paralichthys orbignyanus (Valenciennes, 1839): differential modulation of digestive enzymes and energy reserves in relation to diet. Pan-Am j Aquat Sci 16(1):79–89

    Google Scholar 

  • Amadeu Santana AR, Werth M, Benedito-Cecilio E (2015) Use of food resources by detritivorous fish in floodplains: a synthesis. Acta Biológica Colombiana 20(1):5–14

    Article  Google Scholar 

  • Asaro A, Paggi RA, del Valle JC, López Mañanes AA (2018) Glucose homeostasis in the euryhaline crab Cytograpsus angulatus: effects of the salinity in the amylase, maltase and sucrase activities in the hepatopancreas and in the carbohydrate reserves in different tissues. Comp Biochem Physiol B Biochem Mol Biol 216:39–47

    Article  CAS  PubMed  Google Scholar 

  • Babaei S, Abedian-Kenari A, Naseri M (1869) Yazdani-Sadati MA & Metón I (2020) Impact of starvation on digestive enzymes activities and plasma metabolites in Siberian sturgeon (Acipenser baerii, Brandt. Aquac Res 51(4):1689–1699

    Article  CAS  Google Scholar 

  • Bertucci JI, Tovar MO, Unniappan S, Navarro JC, Canosa LF (2018) Effects of dietary sunflower oil on growth parameters, fatty acid profiles and expression of genes regulating growth and metabolism in the pejerrey (Odontesthes bonariensis) fry. Aquac Nutr 24(2):748–757

    Article  CAS  Google Scholar 

  • Blaber SJ (1976) The food and feeding ecology of Mugilidae in the St. Lucia lake system. Biol J Linn Soc 8(3): 267–277

  • Blanco AM, Bertucci JI, Sánchez-Bretaño A, Delgado MJ, Valenciano AI, Unniappan S (2017) Ghrelin modulates gene and protein expression of digestive enzymes in the intestine and hepatopancreas of goldfish (Carassius auratus) via the GHS-R1a: possible roles of PLC/PKC and AC/PKA intracellular signaling pathways. Mol Cell Endocrinol 442:165–181

    Article  CAS  PubMed  Google Scholar 

  • Botto F, Valiela I, Iribarne O, Martinetto P, Alberti J (2005) Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Mar Ecol Prog Ser 293:155–164

    Article  Google Scholar 

  • Bowen SH (1983) Detritivory in neotropical fish communities. Environ Biol Fishes 9:137–144

    Article  Google Scholar 

  • Bowen SH, Lutz EV, Ahlgren MO (1995) Dietary protein and energy as determinants of food quality: trophic strategies compared. Ecology 76:899–907

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Bruno DO, Delpiani SM, Cousseau MB, de Astarloa JMD, Blasina GE, Mabragana E, Acha EM (2014) Ocean–estuarine connection for ichthyoplankton through the inlet channel of a temperate choked coastal lagoon (Argentina). Mar Freshw Res 65(12):1116–1130

    Article  Google Scholar 

  • Bruno DO, Riccialdelli L, Botto F, Acha EM (2017) Organic matter sources for fish larvae and juveniles in a marine-estuarine interface (Mar Chiquita lagoon, Argentina). Environ Biol Fishes 100(12):1609–1622

    Article  Google Scholar 

  • Burke M (2019) Carbohydrate intolerance and disaccharidase measurement–a mini-review. Clinical Biochem Reviews 40(4):167

    Article  Google Scholar 

  • Cardona L (2016) Food and feeding of Mugilidae. CRC Press, Boca Raton, pp 165–195

    Google Scholar 

  • Caruso G, Denaro MG, Caruso R, De Pasquale F, Genovese L, Maricchiolo G (2014) Changes in digestive enzyme activities of red porgy Pagrus pagrus during a fasting–refeeding experiment. Fish Physiol Biochem 40(5):1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Castellini DL, Brown D, Lajud NA, De Astarloa JMD & González-Castro M (2019) Juveniles recruitment and daily growth of the southern stock of Mugil liza (Actinopterygii; Fam. Mugilidae): new evidence for the current life-history model. J. Mar. Biolog. Assoc. U.K 99(1): 215–221

  • Chen YJ, Wang XY, Pi RR, Feng JY, Luo L, Lin SM, Wang DS (2018) Preproinsulin expression, insulin release, and hepatic glucose metabolism after a glucose load in the omnivorous GIFT tilapia Oreochromis niloticus. Aquac 482:183–192

    Article  CAS  Google Scholar 

  • Chen YJ, Zhang TY, Chen HY, Lin SM, Luo L, Wang DS (2017) An evaluation of hepatic glucose metabolism at the transcription level for the omnivorous GIFT tilapia, Oreochromis niloticus during postprandial nutritional status transition from anabolism to catabolism. Aquac 473:375–382

    Article  CAS  Google Scholar 

  • Choi CY, Shin HS, Choi YJ, Kim NN, Lee J, Kil GS (2012) Effect of LED light spectra on starvation-induced oxidative stress in the cinnamon clownfish Amphiprion melanopus. Comp Biochem Physiol Part A Mol Integr Physiol 163:357–363

    Article  CAS  Google Scholar 

  • Conde-Sieira M, Soengas JL (2017) Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Front Neurosci 10:603

    Article  PubMed  PubMed Central  Google Scholar 

  • Cousseau MB, Perrotta RG (2013) Peces marinos de Argentina: biología, distribución, pesca. 4a. ed. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero INIDEP. 193 p. ISBN 978–9871443–09–3. (Publicaciones Especiales INIDEP)

  • Crosetti D (2016) Current state of grey mullet fisheries and culture. In: Crosetti D, Blaber S (eds) Biology, ecology and culture of grey mullet (Mugilidae). CRC Press, Boca Raton, FL, pp 398–450

    Google Scholar 

  • da Silva RY, Leite JLR, de Almeida CAL, Pereira DSP, Vidal LVO, de Araujo FG, Fortes-Silva R (2019) New insights into tambaqui (Colossoma macropomum) feeding behavior and digestive physiology by the self-feeding approach: effects on growth, dial patterns of food digestibility, amylase activity and gastrointestinal transit time. Aquaculture 498:116–122

    Article  CAS  Google Scholar 

  • Dar SA, Srivastava PP, Nazir MI, Jahan I, Varghese T, Hajam IA, Gupta S (2021) Modulations of Digestive and Metabolic Enzymes Profiles during Restriction Feeding in Rohu Labeo rohita Fingerlings. N Am J Aquac 83(2):58–66

    Article  Google Scholar 

  • Day RD, Tibbetts IR, Secor SM (2014) Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes. J Comp Physiol B Biochem Syst Environ Physiol 184(4):497–512

    Article  Google Scholar 

  • del Valle JC, Mañanes AAL (2008) Digestive strategies in the South American subterranean rodent Ctenomys talarum. Comp Biochem Physiol A Mol Integr Physiol 150(4):387–394

    Article  PubMed  CAS  Google Scholar 

  • del Valle JC, Busch C, Mañanes AAL (2006) Phenotypic plasticity in response to low quality diet in the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp Biochem Physiol A Mol Integr Physiol 145(3):397

    Article  PubMed  CAS  Google Scholar 

  • del Valle JC, Mañanes AAL, Busch C (2004) Phenotypic flexibility of digestive morphology and physiology of the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp Biochem Physiol A Mol Integr Physiol 139(4):503–512

    Article  PubMed  CAS  Google Scholar 

  • del Valle JC, Michiels MS, López Mañanes AA (2016) Digestive and metabolic profile at the biochemical level of juvenile flounder Paralichthys orbignyanus (Valenciennes, 1839) (Pleuronectiformes: Paralichthyidae ). Pan-Am j Aquat Sci 11:309–323

    Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35:519–539

    Article  CAS  PubMed  Google Scholar 

  • Ensminger DC, Salvador-Pascual A, Arango BG, Allen KN & Vázquez-Medina JP (2021) Fasting ameliorates oxidative stress: A review of physiological strategies across life history events in wild vertebrates. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 256: 110929.

  • Favero G, Gimbo RY, Montoya LNF, Carneiro DJ, Urbinati EC (2020) A fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth. Aquac 524:735242

    Article  CAS  Google Scholar 

  • Ferreira-Lazarte A, Olano A, Villamiel M, Moreno FJ (2017) Assessment of in vitro digestibility of dietary carbohydrates using rat small intestinal extract. J Agric Food Chem 65(36):8046–8053

    Article  CAS  PubMed  Google Scholar 

  • Furné M, García-Gallego M, Hidalgo MC, Morales AE, Domezain A, Domezain J, Sanz A (2008) Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comp Biochem Physiol Part A Mol Integr Physiol 149(4):420–425

    Article  CAS  Google Scholar 

  • Furné M, Morales AE, Trenzado CE, García-Gallego M, Hidalgo MC, Domezain Rus AS (2012) The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J Comp Physiol B Biochem Syst Environ Physiol 182(1):63–76

    Article  CAS  Google Scholar 

  • German AV, Zakonnov VV, Mamontov AA (2010) Organochlorine compounds in bottom sediments, benthos, and fish in the Volga Pool of the Rybinsk Reservoir. Water Resour 37(1):84–88

    Article  CAS  Google Scholar 

  • Gilannejad N, de Las HV, Martos-Sitcha JA, Moyano FJ, Yúfera M, Martínez-Rodríguez G (2020) Ontogeny of expression and activity of digestive enzymes and establishment of gh/igf1 axis in the omnivorous fish chelon labrosus. Animals 10(5):874

    Article  PubMed Central  Google Scholar 

  • Gilannejad N, Silva T, Martínez-Rodríguez G, Yúfera M (2019) Effect of feeding time and frequency on gut transit and feed digestibility in two fish species with different feeding behaviours, gilthead seabream and Senegalese sole. Aquaculture 513:734438

    Article  CAS  Google Scholar 

  • Gominho-Rosa M, Rodrigues APO, Mattioni B, de Francisco A, Moraes G, Fracalossi DM (2015) Comparison between the omnivorous jundiá catfish (Rhamdia quelen) and Nile tilapia (Oreochromis niloticus) on the utilization of dietary starch sources: digestibility, enzyme activity and starch microstructure. Aquac 435:92–99

    Article  CAS  Google Scholar 

  • González Castro M, Abachián V, Perrotta RG (2009a) Age and growth of the striped mullet, Mugil platanus (Actinopterygii, Mugilidae), in a southwestern Atlantic coastal lagoon (37°32 0 S–57°19 W): a proposal for a life-history model. J Appl Ichthyol 25(1):61–66

    Article  Google Scholar 

  • González Castro M, Díaz de Astarloa JM, Cousseau MB, Figueroa DE, Delpiani SM, Bruno D, Deli Antoni MY (2009b) Fish composition in a South-Western Atlantic temperate coastal lagoon: spatial–temporal variation and relationships with environmental variables. J Mar Biol Assoc U K 89:593–660

    Article  Google Scholar 

  • González Castro M, Ibáñez AL, Heras S, Roldán MI, Cousseau MB (2012) Assesment of lineal versus landmarks-based morphometry for discriminating species of Mugilidae (Actinopterygii). Zoological Studies, Editorial: Academia Sinica, Taiwan

  • González-Castro M (2007) Los peces representantes de la familia Mugilidae en Argentina. Universidad Nacional de Mar del Plata (UNMDP), Mar del Plata, Argentina, Tesis Doctoral, p 187

    Google Scholar 

  • González-Castro M, Ghasemzadeh J (2016) Morphology and morphometry based taxonomy of Mugilidae. Biology, Ecology and Culture of Grey Mullet (Mugilidae). Boca Raton, FL: CRC Press, pp. 1–20

  • González-Castro M, Minos G (2016) Sexuality and reproduction of Mugilidae. In: Crosetti D, Blaber S (eds) Biology, ecology and culture of grey mullets (mugilidae). CRC Press, Boca Raton, FL, pp 227–263

    Google Scholar 

  • Kalhoro H, Tong S, Wang L, Hua Y, Volatiana JA, Shao Q (2018) Morphological study of the gastrointestinal tract of Larimichthys crocea (Acanthopterygii: Perciformes). Zool (Curitiba), 35

  • Karasov WH, Caviedes-Vidal E (2020) Adaptation of intestinal epithelial hydrolysis and absorption of dietary carbohydrate and protein in mammals and birds. Comp Biochem Physiol Part A Mol Integr Physiol 110860

  • Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Karasov WH, Martinez del Rio C, Caviedes-Vidal E (2011) Ecological physiology of diet and digestive systems. Annu Rev Physiol 73:69–93

    Article  CAS  PubMed  Google Scholar 

  • Kelly SA, Panhuis TM, Stoehr AM (2012) Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr Physiol 2:1417–1439

    Article  PubMed  Google Scholar 

  • Killen SS, Fu C, Wu Q, Wang YX, Fu SJ (2016) The relationship between metabolic rate and sociability is altered by food deprivation. Funct Ecol 30(8):1358–1365

    Article  Google Scholar 

  • Kristensen TN, Ketola T, Kronholm I (2020) Adaptation to environmental stress at different timescales. Ann N Y Acad Sci 1476(1):5–22

    Article  PubMed  Google Scholar 

  • Krogdahl Å & Bakke-McKellep AM (2005) Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp Biochem Physiol A Mol Integr Physiol 141(4): 450–460

  • Lallès JP (2020) Intestinal alkaline phosphatase in the gastrointestinal tract of fish: biology, ontogeny, and environmental and nutritional modulation. Rev Aquac 12(2):555–581

    Article  Google Scholar 

  • Lemos VM, Varela AS Jr, Schwingel PR, Muelbert JH, Vieira JP (2014) Migration and reproductive biology of Mugil liza (Teleostei: Mugilidae) in south Brazil. J Fish Biol 85(3):671–687

    Article  CAS  PubMed  Google Scholar 

  • Li E, Chen L, Zeng C, Yu N, Xiong Z, Chen X, Qin JG (2008) Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquac 274(1):80–86

    Article  CAS  Google Scholar 

  • Lo Cascio P, Calabrò C, Bertuccio C, Paterniti I, Palombieri D, Calò M, Gabriella Denaro M (2017) Effects of fasting and refeeding on the digestive tract of zebrafish (Danio rerio) fed with Spirulina (Arthrospira platensis), a high protein feed source. Nat Prod Res 31(13):1478–1485

    Article  CAS  PubMed  Google Scholar 

  • Lopez Mañanes AA, Asaro A, Méndez E, Michiels MS, Pinoni SA (2020) Digestive flexibility in Neohelice granulata from the Mar Chiquita Coastal Lagoon: characterization and modulation of key enzymes in hepatopancreas. Cambridge Scholars Publishing 2:255–274

    Google Scholar 

  • Lu DL, Ma Q, Wang J, Li LY, Han SL, Limbu SM, Du ZY (2019) Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. J Physiol 597(6):1585–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma F, Yang Y, Jiang M, Yin D, Liu K (2019) Digestive enzyme activity of the Japanese grenadier anchovy Coilia nasus during spawning migration: influence of the migration distance and the water temperature. J Fish Biol 95(5):1311–1319

    Article  CAS  PubMed  Google Scholar 

  • Mai AC, Mino CI, Marins LF, Monteiro-Neto C, Miranda L, Schwingel PR, Vieira JP (2014) Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil. Estuar Coast Shelf Sci 149:80–86

    Article  Google Scholar 

  • Marín-Juez R, Diaz M, Morata J, Planas JV (2013) Mechanisms regulating GLUT4 transcription in skeletal muscle cells are highly conserved across vertebrates. PLoS ONE 8:e80628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michiels MS, del Valle JC, Lopez Mañanes AA (2013) Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda: Brachyura: Varunidae). Sci Mar 77:129–136

  • Michiels MS, del Valle JC, López Mañanes AA (2015) Biochemical characteristics and modulation by external and internal factors of aminopeptidase-N activity in the hepatopancreas of a euryhaline burrowing crab. J Comp Physiol B Biochem Syst Environ Physiol 185:501–510

    Article  CAS  Google Scholar 

  • Michiels MS, del Valle JC, López Mañanes AA (2017) Trypsin and N- aminopeptidase (APN) activities in the hepatopancreas of an intertidal euryhaline crab: biochemical characteristics and differential modulation by histamine and salinity. Comp Biochem Physiol Part A Mol Integr Physiol 204:228–235

    Article  CAS  Google Scholar 

  • Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morse EJ (2019) Parr Going the Distance: How Migratory Difficulty Influences Red Muscle Lipid Storage in Juvenile Oncorhynchus mykiss (Doctoral dissertation, Portland State University)

  • Morshedi V, Kochanian P, Bahmani M, Yazdani MA, Pourali HR, Ashouri GH, Pasha-Zanoosi H (2017) Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869. Anim Feed Sci Technol 232:207–214

    Article  CAS  Google Scholar 

  • Nebo C, Gimbo RY, Kojima JT, Overturf K, Dal-Pai-Silva M, Portella MC (2018) Depletion of stored nutrients during fasting in Nile tilapia (Oreochromis niloticus) juveniles. J Appl Aquac 30(2):157–173

    Article  Google Scholar 

  • Nespolo RF, Fontúrbel FE, Mejias C, Contreras R, Gutierrez P, Oda E, Bozinovic F (2022) A mesocosm experiment in ecological physiology: The modulation of energy budget in a hibernating marsupial under chronic caloric restriction. Physiol Biochem Zool 95(1):66–81

    Article  PubMed  Google Scholar 

  • Oishi K, Miyazaki M, Takase R, Chigwechokha PK, Komatsu M, Shiozaki K (2020) Regulation of triglyceride metabolism in medaka (Oryzias latipes) hepatocytes by Neu3a sialidase. Fish Physiol Biochem 46(2):563–574

    Article  CAS  PubMed  Google Scholar 

  • Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero-Alejo V, Alonso E, Galich GS (2008) Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus. Comp Biochem Physiol B Biochem Mol Biol 150(3):247–254

    Article  PubMed  CAS  Google Scholar 

  • Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18(5):228–233

    Article  Google Scholar 

  • Pinoni SA, Iribarne O, López Mañanes AA (2011) Between-habitat comparison of digestive enzymes activities and energy reserves in the SW Atlantic euryhaline burrowing crab Neohelice granulata. Comp Biochem Physiol Part A Mol Integr Physiol 158:552–559

    Article  CAS  Google Scholar 

  • Pinoni SA, Michiels MS, López Mañanes AA (2013) Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon. Mar Biol 160:2647–2661

    Article  Google Scholar 

  • Polakof S, Mommsen TP, Soengas JL (2011) Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B Biochem Mol Biol 160:123–149

    Article  CAS  PubMed  Google Scholar 

  • Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B Biochem Syst Environ Physiol 182:1015–1045

    Article  CAS  Google Scholar 

  • Pujante Rodríguez I, Moyano FJ, Martos-Sitcha JA, Mancera JM, Martínez-Rodríguez G (2018) Effect of different salinities on gene expression and activity of digestive enzymes in the thick-lipped grey mullet (Chelon labrosus) Fish Physiol Biochem 44(1): 349–373

  • Ramirez-Otarola N, Naya DE, Sabat P (2018) Seasonal changes in digestive enzymes in five bird species. Can J Zool 96(7):707–712

    Article  CAS  Google Scholar 

  • Sadek S (2016) Culture of Mugilidae in Egypt. In: Crosetti D, Blaber S (eds) Biology, ecology and culture of mullets (Mugilidae). CRC Press, Boca Raton, FL, pp 501–513

    Google Scholar 

  • Salem M, Silverstein J, Rexroad CE, Yao J (2007) Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 8:328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandre LCG, Buzollo H, Neira LM, Nascimento TMT, Jomori RK, Carneiro DJ (2017) Growth and energy metabolism of tambaqui (Colossoma Macropomum) fed diets with different levels of carbohydrates and lipids. J Fish Aquac 8:1–8

    Google Scholar 

  • Secor CL, Day AJ & Hilbish TJ (2001) Factors influencing differential mortality within a marine mussel (Mytilus spp.) hybrid population in southwestern England: reproductive effort and parasitism. Mar Biol 138(4): 731–739

  • Secor SM & Lignot JH (2010) Morphological plasticity of vertebrate aestivation. Aestivation, 183–208

  • Secor SM (2005) Physiological responses to feeding, fasting and estivation for anurans. J Exp Biol 208(13):2595–2609

    Article  PubMed  Google Scholar 

  • Shan XJ, Cao L, Huang W, Dou SZ (2008) Feeding, morphological changes and allometric growth during starvation in miiuy croaker larvae. Chinese Fishes. Springer, Dordrecht, pp 121–130

    Chapter  Google Scholar 

  • Shen L, Guan F, Yuan Y (2021) Fasting affects the intestine and bacterial flora in mudskippers (Boleophthalmus pectinirostris) in semiaquatic and underwater conditions. Aquac 533:736162

    Article  CAS  Google Scholar 

  • Small BC (2022) Nutritional physiology. In Fish Nutrition (pp. 593–641). Academic Press.

  • Steimberg CE (2018) Diets and digestive tracts–‘your food determines your intestine.’ Aquatic Animal Nutrition. Springer, Cham, pp 9–59

    Chapter  Google Scholar 

  • Tamadoni R, Nafisi Bahabadi M, Morshedi V, Bagheri D, Torfi Mozanzadeh M (2020) Effect of short-term fasting and re-feeding on growth, digestive enzyme activities and antioxidant defence in yellowfin seabream, Acanthopagrus latus (Houttuyn, 1782). Aquac Res 51(4):1437–1445

    Article  CAS  Google Scholar 

  • Taylor BW, Flecker AS, Hall RO Jr (2006) Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313(5788):833–836

    Article  CAS  PubMed  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Uddin MS, Ahn HM, Kishimura H, Chun BS (2009) Comparative study of digestive enzymes of squid (Todarodes pacificus) viscera after supercritical carbon dioxide and organic solvent extraction. Biotechnol 14(3):338–344

    CAS  Google Scholar 

  • Vieira JP, Scalabrin C (1991) Migração reprodutiva da “tainha”(Mugil platanus Gunther, 1980) no sul do Brasil. Atlantica 13(1):131–141

    Google Scholar 

  • Volkoff H, Rønnestad I (2020) Effects of temperature on feeding and digestive processes in fish. Temperature 7(4):307–320

    Article  Google Scholar 

  • Wagner CE, McIntyre PB, Buels KS, Gilbert DM, Michel E (2009) Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Funct Ecol 23(6):1122–1131

    Article  Google Scholar 

  • Whitfield AK, Panfili J, Durand JD (2012) A global review of the cosmopolitan flathead mullet Mugil cephalus Linnaeus 1758 (Teleostei: Mugilidae), with emphasis on the biology, genetics, ecology and fisheries aspects of this apparent species complex. In Rev Fish Biol Fish 22(3):641–681

    Article  Google Scholar 

  • Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanography Marine Biol Annual Rev 41:279–309

    Google Scholar 

  • Xiong DM, Xie CX, Zhang HJ, Liu HP (2011) Digestive enzymes along digestive tract of a carnivorous fish Glyptosternum maculatum (Sisoridae, Siluriformes). J Anim Physiol Anim Nutr 95(1):56–64

    Article  CAS  Google Scholar 

  • Yang L, Zhi S, Yang G, Qin C, Yan X, Niu M, Nie G (2021) Molecular identification of GLUT4: the responsiveness to starvation, glucose, insulin, and glucagon on glucose transporter 4 in common carp (Cyprinus carpio L.). J Fish Biol

  • Yang M, Deng K, Pan M, Gu Z, Liu D, Zhang Y, Mai K (2019) Glucose and lipid metabolic adaptations during postprandial starvation of Japanese flounder Paralichthys olivaceus previously fed different levels of dietary carbohydrates. Aquac 501:416–429

    Article  CAS  Google Scholar 

  • Zaefarian A, Yeganeh S, Ouraji H (2020) The Effects of starvation and refeeding on growth and digestive enzymes activity in Caspian brown trout (Salmo caspius Kessler, 1877) fingerlings. Iran J Fish Sci 19(3):1111–1129

    Google Scholar 

  • Zaldúa N, Naya DE (2014) Digestive flexibility during fasting in fish: a review. Comp Biochem Physiol Part A Mol Integr Physiol 169:7–14

    Article  CAS  Google Scholar 

  • Zhou YL, He GL, Jin T, Chen YJ, Dai FY, Luo L, Lin SM (2021) High dietary starch impairs intestinal health and microbiota of largemouth bass. Micropterus Salmoides Aquac 534:736261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP Nº 112 201301 00009 and PIP 112-201301-00339); the Fondo para la Investigación Científica y Tecnológica (FONCyT) (PICT 2019-1344) and the Universidad Nacional de Mar del Plata. C. Albanesi was supported by scholarship from CONICET (Argentina). We want to thank to Agustín Texeira-Moreira, Damián Castellini, Cristian Di Paolo, Daniel and Juan Pablo Gaudioso for their help in specimens collect, and also to MCh authorities/forest guard for logistic support.

Funding

This work was financed by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP Nº 112 201301 00009 and PIP 112–201301-00339); the Fondo para la Investigación Científica y Tecnológica (FONCyT) (PICT 2019–1344) and the Universidad Nacional de Mar del Plata. C. Albanesi was supported by scholarship from CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra López-Mañanes.

Ethics declarations

Conflict of interest

The authors declare no competing/conflicts of interest.

Code availability

Not applicable.

Ethics approval

This study was conducted following the regulations and statements of Ethics Committee CICUAL (OCA 1499/12; FCEyNat, UNMdP, Argentina).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by H.V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to update in author names.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albanesi, C., González-Castro, M. & López-Mañanes, A. Prejuveniles of Mugil liza (Actinopterygii; Fam. Mugilidae) show digestive and metabolic flexibility upon different postprandial times and refeeding. J Comp Physiol B 192, 561–573 (2022). https://doi.org/10.1007/s00360-022-01438-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-022-01438-5

Keywords

Navigation