Skip to main content

Advertisement

Log in

Temperature effects on the activity, shape, and storage of platelets from 13-lined ground squirrels

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The objective of this study is to determine how a hibernating mammal avoids the formation of blood clots under periods of low blood flow. A microfluidic vascular injury model was performed to differentiate the effects of temperature and shear rate on platelet adhesion to collagen. Human and ground squirrel whole blood was incubated at 15 or 37 °C and then passed through a microfluidic chamber over a 250-µm strip of type I fibrillar collagen at that temperature and the shear rates of 50 or 300 s−1 to simulate torpid and aroused conditions, respectively. At 15 °C, both human and ground squirrel platelets showed a 90–95% decrease in accumulation on collagen independent of shear rate. At 37 °C, human platelet accumulation reduced by 50% at 50 s−1 compared to 300 s−1, while ground squirrel platelet accumulation dropped by 80%. When compared to platelets from non-hibernating animals, platelets from animals collected after arousal from torpor showed a 60% decrease in binding at 37 °C and 300 s−1, but a 2.5-fold increase in binding at 15 °C and 50 s−1. vWF binding in platelets from hibernating ground squirrels was decreased by 50% relative to non-hibernating platelets. The source of the plasma that platelets were stored in did not affect the results indicating that the decreased vWF binding was a property of the platelets. Upon chilling, ground squirrel platelets increase microtubule assembly leading to the formation of long rods. This shape change is concurrent with sequestration of platelets in the liver and not the spleen. In conclusion, it appears that ground squirrel platelets are sequestered in the liver during torpor and have reduced binding capacity for plasma vWF and lower accumulation on collagen at low shear rates and after storage at cold temperatures, while still being activated by external agonists. These adaptations would protect the animals from spontaneous thrombus formation during torpor but allow them to restore normal platelet function upon arousal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berger G, Hartwell DW, Wagner DD (1998) P-Selectin and platelet clearance. Blood 92:4446–4452

    CAS  PubMed  Google Scholar 

  • Berndt MC, Andrews RK (2011) Bernard-Soulier syndrome. Haematologica 96:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    Article  CAS  PubMed  Google Scholar 

  • Chung, AWY, Jurasz P, Hollenberg MD, Radomski MW (2002) Mechanisms of action of proteinase-activated receptor agonists on human platelets. Br J Pharmacol 135:1123–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper ST, Richters KE, Melin TE, Liu ZJ, Hordyk PJ, Benrud RR, Geiser LR, Cash SE, Simon Shelley C, Howard DR, Ereth MH, Sola-Visner MC (2012) The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets. Am J Physiol Regul Integr Comp Physiol 302:R1202–R1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, ST, Sell SS, Fahrenkrog M, Wilkinson K, Howard DR, Bergen H, Cruz E, Cash SE, Andrews MT, Hampton M (2016a) Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels. Physiol Genomics 48:513–525

    Article  PubMed  Google Scholar 

  • Cooper S, Sell S, Nelson L, Hawes J, Benrud JA, Kohlnhofer BM, Burmeister BR, Flood VH (2016b) Von Willebrand factor is reversibly decreased during torpor in 13-lined ground squirrels. J Comp Physiol B 186:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vrij EL, Vogelaar PC, Goris M, Houwertjes MC, Herwig A, Dugbartey GJ, Boerema AS, Strijkstra AM, Bouma HR, Henning RH (2014) Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia. PLoS ONE 9:e93218

    Article  PubMed  PubMed Central  Google Scholar 

  • Duvernay M, Young S, Gailani D, Schoenecker J, Hamm H (2013) Protease-activated receptor (PAR) 1 and PAR4 differentially regulate factor V expression from human platelets. Mol Pharmacol 83:781–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelfriet CP, Reesink HW, Blajchman MA, Muylle L, Kjeldsen-Kragh J, Kekomaki R, Yomtovian R, Hocker P, Stiegler G, Klein HG, Soldan K, Barbara J, Slopecki A, Robinson A, Seyfried H (2000) Bacterial contamination of blood components. Vox Sang 78:59–67

    Article  CAS  PubMed  Google Scholar 

  • Faraday, MDN, Rosenfeld, AMDB (1998) In vitro hypothermia enhances platelet GPIIb-IIIa activation and P-selectin expression. Anesthesiology 88:1579–1585

    Article  CAS  PubMed  Google Scholar 

  • Frelinger Iii AL, Furman MI, Barnard MR, Krueger LA, Dae MW, Michelson AD (2003) Combined effects of mild hypothermia and glycoprotein IIb/IIIa antagonists on platelet–platelet and leukocyte–platelet aggregation. Am J Cardiol 92:1099–1101

    Article  Google Scholar 

  • Fuchs B, Budde U, Schulz A, Kessler CM, Fisseau C, Kannicht C (2010) Flow-based measurements of von Willebrand factor (VWF) function: binding to collagen and platelet adhesion under physiological shear rate. Thromb Res 125:239–245

    Article  CAS  PubMed  Google Scholar 

  • Gitz E, Koopman CD, Giannas A, Koekman CA, van den Heuvel DJ, Deckmyn H, Akkerman JW, Gerritsen HC, Urbanus RT (2013) Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibalpha. Haematologica 98:1810–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampton M, Nelson BT, Andrews MT (2010) Circulation and metabolic rates in a natural hibernator: an integrative physiological model. Am J Physiol Regul Integr Comp Physiol 299:R1478–R1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewlett L, Zupančič G, Mashanov G, Knipe L, Ogden D, Hannah MJ, Carter T (2011) Temperature-dependence of Weibel-Palade body exocytosis and cell surface dispersal of von Willebrand factor and its propolypeptide. PLoS ONE 6:e27314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmeister KM, Falet H, Toker A, Barkalow KL, Stossel TP, Hartwig JH (2001) Mechanisms of cold-induced platelet actin assembly. J Biol Chem 276:24751–24759

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, von Andrian UH, Wagner DD, Stossel TP, Hartwig JH (2003) The clearance mechanism of chilled blood platelets. Cell 112:87–97

    Article  CAS  PubMed  Google Scholar 

  • Hogberg C, Erlinge D, Braun, OO (2009) Mild hypothermia does not attenuate platelet aggregation and may even increase ADP-stimulated platelet aggregation after clopidogrel treatment. Thromb J 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Italiano JE Jr, Bergmeier W, Tiwari S, Falet H, Hartwig JH, Hoffmeister KM, Andre P, Wagner DD, Shivdasani RA (2003) Mechanisms and implications of platelet discoid shape. Blood 101:4789–4796

    Article  CAS  PubMed  Google Scholar 

  • Jacobs MR, Palavecino E, Yomtovian R (2001) Don’t bug me: the problem of bacterial contamination of blood components—challenges and solutions. Transfusion 41:1331–1334

    Article  CAS  PubMed  Google Scholar 

  • Kanaji S, Fahs SA, Shi Q, Haberichter SL, Montgomery RR (2012) Contribution of platelet versus endothelial VWF to platelet adhesion and hemostasis. J Thromb Haemost 10:1646–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechler E, Penick GD (1963) Blood clotting defect in hibernating ground squirrels (Citellus tridecemlineatus). Am J Physiol 205:985–988

    CAS  PubMed  Google Scholar 

  • Lehmann M, Wallbank AM, Dennis KA, Wufsus AR, Davis KM, Rana K, Neeves KB (2015) On-chip recalcification of citrated whole blood using a microfluidic herringbone mixer. Biomicrofluidics 9:064106

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenting PJ, Casari C, Christophe OD, Denis CV (2012) von Willebrand factor: the old, the new and the unknown. J Thromb Haemost 10:2428–2437

    Article  CAS  PubMed  Google Scholar 

  • Lindenblatt N, Menger MD, Klar E, Vollmar B (2005) Sustained hypothermia accelerates microvascular thrombus formation in mice. Am J Physiol Heart Circ Physiol 289:H2680–H2687

    Article  CAS  PubMed  Google Scholar 

  • Mackman N, Davis GE (2011) Blood coagulation and blood vessel development: is tissue factor the missing link? Arterioscler Thromb Vasc Biol 31:2364–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marguerie GA, Plow EF, Edgington TS (1979) Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem 254:5357–5363

    CAS  PubMed  Google Scholar 

  • Michelson AD, MacGregor H, Barnard MR, Kestin AS, Rohrer MJ, Valeri CR (1994) Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro. Thromb Haemost 71:633–640

    CAS  PubMed  Google Scholar 

  • Neeves KB, Diamond SL (2008) A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood. Lab Chip 8:701–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylander S, Mattsson C, Lindahl TL (2006) Characterisation of species differences in the platelet ADP and thrombin response. Thromb Res 117:543–549

    Article  CAS  PubMed  Google Scholar 

  • Patel-Hett S, Richardson JL, Schulze H, Drabek K, Isaac NA, Hoffmeister K, Shivdasani RA, Bulinski JC, Galjart N, Hartwig JH, Italiano JE Jr (2008) Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood 111:4605–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pidcoke HF, McFaul SJ, Ramasubramanian AK, Parida BK, Mora AG, Fedyk CG, Valdez-Delgado KK, Montgomery RK, Reddoch KM, Rodriguez AC, Aden JK, Jones JA, Bryant RS, Scherer MR, Reddy HL, Goodrich RP, Cap AP (2013). Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion 53:137S–149S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pivorun EB, Sinnamon WB (1981) Blood coagulation studies in normothermic, hibernating, and aroused Spermophilus franklini. Cryobiology 18:515–520

    Article  CAS  PubMed  Google Scholar 

  • Rana K, Neeves KB (2016) Blood flow and mass transfer regulation of coagulation. Blood Rev 30:357–368

    Article  CAS  PubMed  Google Scholar 

  • Reddick RL, Poole BL, Penick GD (1973) Thrombocytopenia of hibernation. Mechanism of induction and recovery. Lab Invest 28:270–278

    CAS  PubMed  Google Scholar 

  • Reddoch KM, Pidcoke HF, Montgomery RK, Fedyk CG, Aden JK, Ramasubramanian AK, Cap AP (2014) Hemostatic function of apheresis platelets stored at 4 °C and 22 °C. Shock 41:54–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Reznik G, Reznik-Schuller H, Emminger A, Mohr U (1975) Comparative studies of blood from hibernating and nonhibernating European hamsters (Cricetus cricetus L). Lab Anim Sci 25:210–215

    CAS  PubMed  Google Scholar 

  • Rumjantseva V, Grewal PK, Wandall HH, Josefsson EC, Sorensen AL, Larson G, Marth JD, Hartwig JH, Hoffmeister KM (2009) Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat Med 15:1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharbert G, Kalb ML, Essmeister R, Kozek-Langenecker SA (2010) Mild and moderate hypothermia increases platelet aggregation induced by various agonists: a whole blood in vitro study. Platelets 21:44–48

    Article  CAS  PubMed  Google Scholar 

  • Smith DE, Lewis YS, Svihla G (1954) Prolongation of clotting time in the dormant bat (Myotis lucifugus). Experientia 10:218

    Article  CAS  PubMed  Google Scholar 

  • Springer DL, Miller JH, Spinelli SL, Pasa-Tolic L, Purvine SO, Daly DS, Zangar RC, Jin S, Blumberg N, Francis CW, Taubman MB, Casey AE, Wittlin SD, Phipps RP (2009) Platelet proteome changes associated with diabetes and during platelet storage for transfusion. J Proteome Res 8:2261–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suomalainen P, Lehto E (1952) Prolongation of clotting time in hibernation. Experientia 8:65

    Article  CAS  PubMed  Google Scholar 

  • Svihla A, Bowman H, Ritenour R (1952a) Relation of prothrombin to the prolongation of clotting time in aestivating ground squirrels. Science 115:306–307

    Article  CAS  PubMed  Google Scholar 

  • Svihla A, Bowman H, Pearson R (1952b) Prolongation of blood clotting time in the dormant hamster. Science 115:272

    Article  CAS  PubMed  Google Scholar 

  • Svihla A, Bowman H, Ritenour R (1953) Stimuli and their effects on awakening of dormant ground squirrels. Am J Physiol 172:681–683

    CAS  PubMed  Google Scholar 

  • Thon JN, Schubert P, Devine DV (2008) Platelet storage lesion: a new understanding from a proteomic perspective. Transfus Med Rev 22:268–279

    Article  PubMed  Google Scholar 

  • Van Poucke S, Stevens K, Marcus AE, Lance M (2014). Hypothermia: effects on platelet function and hemostasis. Thromb J 12:31

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Wal DE, Du VX, Lo KS, Rasmussen JT, Verhoef S, Akkerman JW (2010) Platelet apoptosis by cold-induced glycoprotein Ibalpha clustering. J Thromb Haemost 8:2554–2562

    Article  PubMed  Google Scholar 

  • Vasquez RJ, Howell B, Yvon AM, Wadsworth P, Cassimeris L (1997) Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell 8:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmar B, Menger MD (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 89:1269–1339

    Article  CAS  PubMed  Google Scholar 

  • Vostal JG, Mondoro TH (1997) Liquid cold storage of platelets: a revitalized possible alternative for limiting bacterial contamination of platelet products. Transfus Med Rev 11:286–295

    Article  CAS  PubMed  Google Scholar 

  • Weiss HJ, Sussman II, Hoyer LW (1977) Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIII and in patients with von Willebrand’s disease. J Clin Invest 60:390–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Krivit W (1967) An ultrastructural basis for the shape changes induced in platelets by chilling. Blood 30:625–635

    CAS  PubMed  Google Scholar 

  • White JG, Rao GH (1998) Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. Am J Pathol 152:597–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xavier RG, White AE, Fox SC, Wilcox RG, Heptinstall S (2007) Enhanced platelet aggregation and activation under conditions of hypothermia. Thromb Haemost 98:1266–1275

    CAS  PubMed  Google Scholar 

  • Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA (2006) Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci 103:10166–10173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatzman ML (1984) Renal and cardiovascular effects of hibernation and hypothermia. Cryobiology 21:593–614

    Article  CAS  PubMed  Google Scholar 

  • Zucker MB, Nachmias VT (1985) Platelet activation. Arteriosclerosis 5:2–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Amy Cooper, for her care of the ground squirrels and surgical expertise. This work was supported by grants from the NIH (1R15HL093680) to S.C. and NSF CAREER (CBET-1351672), American Heart Association (14GRNT20410094), and the National Institutes of Health (R01HL120728, R21NS082933) to K.N. S.L. and C.L. received a UW-La Crosse Dean’s Distinguished Undergraduate Summer fellowship.

Author contributions

S.C. and K.N. conceived the ideas and designed the experiments. A.K. and M.Z. performed the platelet vWF and fibrinogen binding assays. S.L., K.D., T. Theisen, and M.L. performed microfluidics. M.G. and T. Tenpas performed immunohistochemistry. X.L., K.B., and S.H. measured microtubule kinetics. S.M. and C.L. performed splenectomy experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Cooper.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Communicated by F. Breukelen.

This manuscript is part of the special issue Hibernation—Guest Editors: Frank van Breukelen and Jenifer C. Utz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, S., Lloyd, S., Koch, A. et al. Temperature effects on the activity, shape, and storage of platelets from 13-lined ground squirrels. J Comp Physiol B 187, 815–825 (2017). https://doi.org/10.1007/s00360-017-1081-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1081-x

Keywords

Navigation