Skip to main content
Log in

Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Liver glycogen is an important energy store in vertebrates, and in the freeze-tolerant wood frog, Rana sylvatica, this carbohydrate also serves as a major source of the cryoprotectant glucose. We investigated how variation in the levels of the catalytic subunit of protein kinase A (PKAc), glycogen phosphorylase (GP), and glycogen synthase (GS) relates to seasonal glycogen cycling in a temperate (Ohioan) and subarctic (Alaskan) populations of this species. In spring, Ohioan frogs had reduced potential for glycogen synthesis, as evidenced by low GS activity and high PKAc protein levels. In addition, glycogen levels in spring were the lowest of four seasonal samples, as energy input was likely directed towards metabolism and somatic growth during this period. Near-maximal glycogen levels were reached by mid-summer, and remained unchanged in fall and winter, suggesting that glycogenesis was curtailed during this period. Ohioan frogs had a high potential for glycogenolysis and glycogenesis in winter, as evidenced by large glycogen reserves, high levels of GP and GS proteins, and high GS activity, which likely allows for rapid mobilization of cryoprotectant during freezing and replenishing of glycogen reserves during thawing. Alaskan frogs also achieved a near-maximal liver glycogen concentration by summer and displayed high glycogenic and glycogenolytic potential in winter, but, unlike Ohioan frogs, started replenishing their energy reserves early in spring. We conclude that variation in levels of both glycogenolytic and glycogenic enzymes likely happens in response to seasonal changes in energetic strategies and demands, with winter survival being a key component to understanding the regulation of glycogen cycling in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betts M, Russell R (2003) Amino acid properties and consequences of substitutions. In: Barnes M, Gray I (eds) Bioinformatics for geneticists. Wiley, West Sussex, pp 289–316

    Chapter  Google Scholar 

  • Bollen M, Keppens S, Stalmans W (1998) Specific features of glycogen metabolism in the liver. Biochem J 336:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne JJ, White RJ (1975) Cyclic changes in liver and muscle glycogen tissue lipid and blood glucose in a naturally occurring population of Rana catesbeiana. Comp Biochem Physiol A 50:709–715

    Article  CAS  PubMed  Google Scholar 

  • Caldwell GB, Howe AK, Nickl CK, Dostmann WR, Ballif BA, Deming PB (2012) Direct modulation of the protein kinase A catalytic subunit α by growth factor receptor tyrosine kinases. J Cell Biochem 113:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castiñeiras MJ, Guinovart JJ, Itarte E, Rosell-Pérez M (1977) Variaciones estacionales en el metabolismo hepático del glucógeno en la rana. Rev Esp Fisiol 33:311–316

    PubMed  Google Scholar 

  • Costanzo JP (2013) Wood Frog. In: Pfingsten RA, Davis JG, Matson TO, Lipps GJ et al (eds) Amphibians of Ohio, vol 17. Ohio Biological Survey Bulletin New Series, Columbus, pp 667–684

    Google Scholar 

  • Costanzo JP, Lee RE (1993) Cryoprotectant production capacity of the freeze-tolerant wood frog, Rana sylvatica. Can J Zool 71:71–75

    Article  Google Scholar 

  • Costanzo JP, Lee RE (2013) Avoidance and tolerance of freezing in ectothermic vertebrates. J Exp Biol 216:1961–1967

    Article  PubMed  Google Scholar 

  • Costanzo JP, do Amaral MCF, Rosendale AJ, Lee RE (2013) Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol 216:3461–3473

    Article  CAS  PubMed  Google Scholar 

  • Costanzo JP, do Amaral MCF, Rosendale AJ, Lee RE (2014) Seasonality of freeze tolerance in a subarctic population of the wood frog, Rana sylvatica. Int J Zool 2014:Article ID 750153. doi:10.1155/2014/750153

    Article  Google Scholar 

  • Costanzo JP, Reynolds AM, do Amaral MCF, Rosendale AJ, Lee RE (2015) Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. PLoS One 10(2):e0117234

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado MJ, Gutierrez P, Alonso-Bedate M (1989) Seasonal cycles in testicular activity in the frog, Rana perezi. Gen Comp Endocrinol 73:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dinsmore SC, Swanson DL (2008) Temporal patterns of tissue glycogen, glucose, and glycogen phosphorylase activity prior to hibernation in freeze-tolerant chorus frogs, Pseudacris triseriata. Can J Zool 86:1095–1100

    Article  CAS  Google Scholar 

  • do Amaral MCF, Lee RE, Costanzo JP (2013) Enzymatic regulation of glycogenolysis in a subarctic population of the wood frog: implications for extreme freeze tolerance. PLoS One 8:e79169

    Article  PubMed  PubMed Central  Google Scholar 

  • do Amaral MCF, Lee RE, Costanzo JP (2015) Hepatocyte responses to in vitro freezing and β-adrenergic stimulation: insights into the extreme freeze tolerance of subarctic Rana sylvatica. J Exp Zool 323A:89–96

    Article  Google Scholar 

  • Edwards JR, Jenkins JL, Swanson DL (2004) Seasonal effects of dehydration on glucose mobilization in freeze-tolerant chorus frogs (Pseudacris triseriata) and freeze-intolerant toads (Bufo woodhousii and B. cognatus). J Exp Zool 301A:521–531

    Article  CAS  Google Scholar 

  • Feder ME, Burggren WW (1992) Environmental physiology of the amphibians. University of Chicago Press, Chicago

    Google Scholar 

  • Fenoglio C, Bernocchi G, Barni S (1992) Frog hepatocyte modifications induced by seasonal variations: a morphological and cytochemical study. Tissue Cell 24:17–29

    Article  CAS  PubMed  Google Scholar 

  • Holden CP, Storey KB (2000) Purification and characterization of protein kinase A from liver of the freeze-tolerant wood frog: role in glycogenolysis during freezing. Cryobiology 40:323–331

    Article  CAS  PubMed  Google Scholar 

  • Irwin JT, Costanzo JP, Lee RE (2003) Postfreeze reduction of locomotor endurance in the freeze-tolerant wood frog, Rana sylvatica. Physiol Biochem Zool 76:331–338

    Article  PubMed  Google Scholar 

  • Jenkins JL, Swanson DL (2005) Liver glycogen, glucose mobilization and freezing survival in chorus frogs. J Therm Biol 30:485–494

    Article  CAS  Google Scholar 

  • Jørgensen CB (1983) Pattern of growth in a temperate zone anuran (Bufo viridis Laur.). J Exp Zool 227:433–439

    Article  Google Scholar 

  • Kessel B (1965) Breeding dates of Rana sylvatica at College, Alaska. Ecology 46:206–208

    Article  Google Scholar 

  • Kirton MP (1974) Fall movements and hibernation of the wood frog, Rana sylvatica, in Interior Alaska. Dissertation, University of Alaska

  • Kiss AJ, Muir TJ, Lee RE, Costanzo JP (2011) Seasonal variation in the hepatoproteome of the dehydration and freeze-tolerant wood frog, Rana sylvatica. Int J Mol Sci 12:8406–8414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskela P, Pasanen S (1975) Effect of thermal acclimation on seasonal liver and muscle glycogen content in the common frog, Rana temporaria L. Comp Biochem Physiol A 50:723–727

    Article  CAS  PubMed  Google Scholar 

  • Larson DJ, Middle L, Vu H, Zhang W, Serianni AS, Duman J, Barnes BM (2014) Wood frog adaptations to overwintering in Alaska: new limits to freezing tolerance. J Exp Biol 217:2193–2200

    Article  PubMed  Google Scholar 

  • Lofts B (1964) Seasonal changes in the functional activity of the interstitial and spermatogenetic tissues of the green frog, Rana esculenta. Gen Comp Endocrinol 4:550–562

    Article  CAS  PubMed  Google Scholar 

  • Lucassen M, Schmidt A, Eckerle LG, Pörtner H-O (2003) Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish. Am J Physiol Regul Integr Comp Physiol 285:R1410–R1420

    Article  CAS  PubMed  Google Scholar 

  • Martof BS, Humphries RL (1959) Geographic variation in the wood frog Rana sylvatica. Am Midl Nat 61:350–389

    Article  Google Scholar 

  • Orczewska JI, Hartleben G, O’Brien KM (2010) The molecular basis of aerobic metabolic remodeling differs between oxidative muscle and liver of threespine sticklebacks in response to cold acclimation. Am J Physiol 299:R352–R364

    CAS  Google Scholar 

  • Parker G (2004) Hyperglycemia and inhibition of glycogen synthase in streptozotocin-treated mice: role of o-linked n-acetylglucosamine. J Biol Chem 279:20636–20642

    Article  CAS  PubMed  Google Scholar 

  • Pasanen S, Koskela P (1974) Seasonal and age variation in the metabolism of the common frog, Rana temporaria L. in northern Finland. Comp Biochem Physiol A 47:635–654

    Article  CAS  PubMed  Google Scholar 

  • Pfister TD, Storey KB (2006) Responses of protein phosphatases and cAMP-dependent protein kinase in a freeze-avoiding insect, Epiblema scudderiana. Arch Insect Biochem Physiol 62:43–54

    Article  CAS  PubMed  Google Scholar 

  • Roach PJ (1990) Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J 4:2961–2968

    CAS  PubMed  Google Scholar 

  • Rosendale AJ, Lee RE, Costanzo JP (2015) Seasonal variation and freezing response of glucose transporter 2 in liver of the wood frog: implications for geographic variation in freeze tolerance. J Zool 297:132–138

    Article  Google Scholar 

  • Russell EL, Storey KB (1995) Glycogen synthetase and the control of cryoprotectant clearance after thawing in the freeze-tolerant wood frog. Cryo Lett 16:263–266

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Scapin S, Di Giuseppe G (1994) Seasonal variations of glycogen synthase and phosphorylase activities in the liver of the frog Rana esculenta. Comp Biochem Physiol B 107:189–195

    Google Scholar 

  • Schwartz CF, Carter CE (1982) Properties of glycogen synthase and phosphorylase from Biomphalaria glabrata (mollusca). J Parasitol 68:228–235

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real‐time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Skalhegg BS, Tasken K (2002) Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci 5:D678–D693

    Google Scholar 

  • Søberg K, Jahnsen T, Rognes T, Skalhegg BS, Laerdahl JK (2013) Evolutionary paths of the CAMP-dependent protein kinase (PKA) catalytic subunits. PLoS One 8(4):e60935

    Article  PubMed  PubMed Central  Google Scholar 

  • Storey KB, Storey JM (1987) Persistence of freeze tolerance in terrestrially hibernating frogs after spring emergence. Copeia 3:720–726

    Article  Google Scholar 

  • Storey KB, Storey JM (2004) Physiology, biochemistry and molecular biology of vertebrate freeze tolerance: the wood frog. In: Benson E, Fuller B, Lane N (eds) Life in the frozen state. CRC Press, Boca Raton, pp 243–274

    Chapter  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Q (2004) Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteom 3:960–969

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(research0034):1

    Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wells KD, Bevier CR (1997) Contrasting patterns of energy substrate use in two species of frogs that breed in cold weather. Herpetologica 53:70–80

    Google Scholar 

  • Windlarsen H, Jørgensen CB (1987) Hormonal-control of seasonal growth in a temperate zone toad Bufo bufo. Acta Zool 68:49–56

    Article  Google Scholar 

  • Zimmerman SL, Frisbie J, Goldstein DL, Rivera K, Krane C (2006) Excretion and conservation of glycerol, and expression of aquaporins and glyceroporins, during cold acclimation in Cope’s gray tree frog Hyla chrysoscelis. Am J Physiol 292:R544–R555

    Google Scholar 

Download references

Acknowledgments

We thank Andrew Rosendale and Alice Reynolds for aiding with frog and tissue collection, and Marian Snively and David Russell for aiding with the logistical challenges of collecting frogs in Alaska. We thank José Pedro do Amaral and Andrew Rosendale for providing constructive comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Clara F. do Amaral.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Amaral, M.C.F., Lee, R.E. & Costanzo, J.P. Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica . J Comp Physiol B 186, 1045–1058 (2016). https://doi.org/10.1007/s00360-016-1012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1012-2

Keywords

Navigation