Skip to main content
Log in

Does Japanese medaka (Oryzias latipes) exhibit a gill Na+/K+-ATPase isoform switch during salinity change?

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Some euryhaline teleosts exhibit a switch in gill Na+/K+-ATPase (Nka) α isoform when moving between fresh water (FW) and seawater (SW). The present study tested the hypothesis that a similar mechanism is present in Japanese medaka and whether salinity affects ouabain, Mg2+, Na+ and K+ affinity of the gill enzyme. Phylogenetic analysis classified six separate medaka Nka α isoforms (α1a, α1b, α1c, α2, α3a and α3b). Medaka acclimated long-term (>30 days) to either FW or SW had similar gill expression of α1c, α2, α3a and α3b, while both α1a and α1b were elevated in SW. Since a potential isoform shift may rely on early changes in transcript abundance, we conducted two short-term (1–3 days) salinity transfer experiments. FW to SW acclimation induced an elevation of α1b and α1a after 1 and 3 days. SW to FW acclimation reduced α1b after 3 days with no other α isoforms affected. To verify that the responses were typical, additional transport proteins were examined. Gill ncc and nhe3 expression were elevated in FW, while cftr and nkcc1a were up-regulated in SW. This is in accordance with putative roles in ion-uptake and secretion. SW-acclimated medaka had higher gill Nka V max and lower apparent K m for Na+ compared to FW fish, while apparent affinities for K+, Mg2+ and ouabain were unchanged. The present study showed that the Japanese medaka does not exhibit a salinity-induced α isoform switch and therefore suggests that Na+ affinity changes involve altered posttranslational modification or intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bossus MC, Madsen SS, Tipsmark CK (2015) Functional dynamics of claudin expression in Japanese medaka (Oryzias latipes): response to environmental salinity. Comp Biochem Physiol A 187:74–85. doi:10.1016/j.cbpa.2015.04.017

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  • Bystriansky JS, Schulte PM (2011) Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar). J Exp Biol 214:2435–2442. doi:10.1242/jeb.050633

    Article  CAS  PubMed  Google Scholar 

  • Bystriansky JS, Richards JG, Schulte PM, Ballantyne JS (2006) Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J Exp Biol 209:1848–1858. doi:10.1242/jeb.02188

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Hiong KC, Lam SP, Ong SW, Wee WL, Wong WP, Ip YK (2014) Functional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper Periophthalmodon schlosseri. Front Physiol. doi:10.3389/fphys.2014.00158

    PubMed  PubMed Central  Google Scholar 

  • Cornelius F, Mahmmoud YA (2007) Modulation of FXYD interaction with Na, K-ATPase by anionic phospholipids and protein kinase phosphorylation. Biochemistry 46:2371–2379. doi:10.1021/bi062239j

    Article  CAS  PubMed  Google Scholar 

  • Dalziel AC, Bittman J, Mandic M, Ou M, Schulte PM (2014) Origins and functional diversification of salinity-responsive Na+, K+ ATPase α1 paralogs in salmonids. Mol Ecol 23:3483–3503. doi:10.1111/mec.12828

    Article  CAS  PubMed  Google Scholar 

  • Degnan KJ, Zadunaisky JA (1980) Ionic contributions to the potential and current across the opercular epithelium. Am J Physiol 238:R231–R239

    CAS  PubMed  Google Scholar 

  • Dymowska AK, Hwang PP, Goss GG (2012) Structure and function of ionocytes in the freshwater fish gill. Respir Physiol Neurobiol 184:282–292. doi:10.1016/j.resp.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177. doi:10.1152/physrev.00050.2003

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Feng SH, Leu JH, Yang CH, Fang MJ, Huang CJ, Hwang PP (2002) Gene expression of Na+-K+-ATPase alpha 1 and alpha 3 subunits in gills of the teleost Oreochromis mossambicus, adapted to different environmental salinities. Marine Biotech 4:379–391. doi:10.1007/s10126-002-0006-0

    Article  CAS  Google Scholar 

  • Flicek P et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755. doi:10.1093/nar/gkt1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foskett JK, Scheffey C (1982) The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215:164–166. doi:10.1126/science.7053566

    Article  CAS  PubMed  Google Scholar 

  • Garty H, Karlish SJD (2006) Role of FXYD proteins in ion transport. Annu Rev Physiol 68:431–459. doi:10.1146/annurev.physiol.68.040104.131852

    Article  CAS  PubMed  Google Scholar 

  • Glynn I (1985) The enzymes of biological membranes. In: Martonosi A (ed) vol 3, 2nd edn. Plenum Press, New York, pp 35–114

    Google Scholar 

  • Glynn IM (1993) All hands to the sodium-pump. J Physiol 462:1–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruta K, Yamashita T, Kawashima S (1991) Changes in arginine vasotocin content in the pituitary of the medaka (Oryzias latipes) during osmotic stress. Gen Comp Endocrinol 83:327–336. doi:10.1016/0016-6480(91)90137-u

    Article  CAS  PubMed  Google Scholar 

  • Hiroi J, McCormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 184:257–268. doi:10.1016/j.resp.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  • Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T (2005) Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl cotransporter and CFTR anion channel. J Exp Biol 208:2023–2036. doi:10.1242/jeb.01611

    Article  CAS  PubMed  Google Scholar 

  • Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T (2008) Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211:2584–2599. doi:10.1242/jeb.018663

    Article  CAS  PubMed  Google Scholar 

  • Hirose S, Kaneko T, Naito N, Takei Y (2003) Molecular biology of major components of chloride cells. Comp Biochem Physiol B 136:593–620. doi:10.1016/s1096-4959(03)00287-2

    Article  PubMed  Google Scholar 

  • Hsu HH, Lin LY, Tseng YC, Horng JL, Hwang PP (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357:225–243. doi:10.1007/s00441-014-1883-z

    Article  CAS  PubMed  Google Scholar 

  • Hwang PP, Hirano R (1985) Effects of environmental salinity on intercellular organization and junctional structure of chloride cells in early stages of teleost development. J Exp Zool 236:115–126. doi:10.1002/jez.1402360202

    Article  CAS  Google Scholar 

  • Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol 301:R28–R47. doi:10.1152/ajpregu.00047.2011

    Article  CAS  Google Scholar 

  • Inokuchi M, Hiroi J, Watanabe S, Lee KM, Kaneko T (2008) Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp Biochem Physiol A 151:151–158. doi:10.1016/j.cbpa.2008.06.012

    Article  Google Scholar 

  • Inoue K, Takei Y (2002) Diverse adaptability in Oryzias species to high environmental salinity. Zool Sci 19:727–734. doi:10.2108/zsj.19.727

    Article  PubMed  Google Scholar 

  • Inoue K, Takei Y (2003) Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol B 136:635–645. doi:10.1016/s1096-4959(03)00204-5

    Article  PubMed  Google Scholar 

  • Ip YK et al (2012) Roles of three branchial Na+-K+-ATPase α-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am J Physiol 303:R112–R125. doi:10.1152/ajpregu.00618.2011

    CAS  Google Scholar 

  • Ivanis G, Esbaugh AJ, Perry SF (2008) Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid–base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2467–2477. doi:10.1242/jeb.017491

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Madsen SS, Kristiansen K (1998) Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J Exp Zool 282:290–300. doi:10.1002/(sici)1097-010x(19981015)282:3<290:aid-jez2>3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  • Johnston CE, Saunders RL (1981) Parr-smolt transformation of yearling Atlantic salmon (Salmo salar) at several rearing temperatures. Can J Fish Aqua Sci 38:1189–1198

    Article  Google Scholar 

  • Jorgensen PL (2008) Importance for absorption of Na+ from freshwater of lysine, valine and serine substitutions in the α1a-isoform of Na, K-ATPase in the gills of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). J Membr Biol 223:37–47. doi:10.1007/s00232-008-9111-y

    Article  CAS  PubMed  Google Scholar 

  • Judd S (2012) Na+/K+-ATPase isoform regulation in three-spine stickleback (Gasterosteus aculeatus) during salinity acclimation. DePaul University

  • Kang CK, Tsai SC, Lee TH, Hwang PP (2008) Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp Biochem Physiol A 151:566–575. doi:10.1016/j.cbpa.2008.07.020

    Article  Google Scholar 

  • Kelly SP, Woo NYS (1999) Cellular and biochemical characterization of hyposmotic adaptation in a marine teleost, Sparus sarba. Zool Sci 16:505–514. doi:10.2108/zsj.16.505

    Article  CAS  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. doi:10.1093/bioinformatics/btm091

    Article  CAS  PubMed  Google Scholar 

  • Kultz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914. doi:10.1242/jeb.118695

    Article  PubMed  Google Scholar 

  • Lee TH, Tsai JC, Fang MJ, Yu MJ, Hwang PP (1998) Isoform expression of Na+-K+-ATPase alpha-subunit in gills of the teleost Oreochromis mossambicus. Am J Physiol 275:R926–R932

    CAS  PubMed  Google Scholar 

  • Lin CH, Lee TH (2005) Sodium or potassium ions activate different kinetics of gill Na, K-ATPase in three seawater-and freshwater-acclimated euryhaline teleosts. J Exp Zool Part A 303A:57–65. doi:10.1002/jez.a.130

    Article  CAS  Google Scholar 

  • Madsen SS, Naamansen ET (1989) Plasma ionic regulation and gill Na+/K+-ATPase changes during rapid transfer to seawater of yearling rainbow trout Salmo gairdneri: time course and seasonal variation. J Fish Biol 34:829–840. doi:10.1111/j.1095-8649.1989.tb03367.x

    Article  CAS  Google Scholar 

  • Madsen SS, Kiilerich P, Tipsmark CK (2009) Multiplicity of expression of Na+, K+-ATPase α-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change. J Exp Biol 212:78–88. doi:10.1242/jeb.024612

    Article  CAS  PubMed  Google Scholar 

  • Madsen SS, Bujak J, Tipsmark C (2014) Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport? J Exp Biol 217:3108–3121

    Article  CAS  PubMed  Google Scholar 

  • Marshall WS, Grosell M (2006) Ion transport, osmoregulation and acid-base balance. In: Evans DH, Clairborne JB (eds) The physiology of fishes. Taylor and Francis Group, Boca Raton, pp 177–210

    Google Scholar 

  • Marshall WS, Singer TD (2002) Cystic fibrosis transmembrane conductance regulator in teleost fish. BBA Biomembranes 1566:16–27. doi:10.1016/s0005-2736(02)00584-9

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD (1993) Methods for nonlethal gill biopsy and measurement of Na+, K+- ATPase activity. Can J Fish Aqua Sci 50:656–658. doi:10.1139/f93-075

    Article  CAS  Google Scholar 

  • McCormick SD, Moyes CD, Ballantyne JS (1989) Influence of salinity on the energetics of gill and kidney of atlantic salmon (Salmo salar). Fish Physiol Biochem 6:243–254. doi:10.1007/bf01875027

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212:3994–4001. doi:10.1242/jeb.037275

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto T, Machida T, Kawashima S (1986) Influence of environmental salinity on the development of chloride cells of fresh-water and brackish-water Medaka, Oryzias latipes. Zool Sci 3:859–865

    CAS  Google Scholar 

  • Mobasheri A et al (2000) Na+, K+-ATPase isozyme diversity; Comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91. doi:10.1023/a:1005580332144

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TO et al (2007) Differential expression of gill Na+, K+-ATPase α- and β-subunits, Na+, K+,2Cl-cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210:2885–2896. doi:10.1242/jeb.002873

    Article  CAS  PubMed  Google Scholar 

  • Pagliarani A, Ventrella V, Ballestrazzi R, Trombetti F, Pirini M, Trigari G (1991) Salinity-dependence of the properties of gill Na+/K+-ATPase in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B 100:229–236. doi:10.1016/0305-0491(91)90366-l

    Google Scholar 

  • Perry SF, Shahsavarani A, Georgalis T, Bayaa M, Furimsky M, Thomas SLY (2003) Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: Their role in ionic and acid-base regulation. J Exp Zool Part A 300A:53–62. doi:10.1002/jez.a.10309

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. doi:10.1093/nar/29.9.e45

    PubMed  PubMed Central  Google Scholar 

  • Richards JG, Semple JW, Bystriansky JS, Schulte PM (2003) Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206:4475–4486. doi:10.1242/jeb.00701

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Nakamura N, Ito Y, Hoshijima K, Esaki M, Zhao B, Hirose S (2010) Identification of zebrafish Fxyd11a protein that is highly expressed in ion-transporting epithelium of the gill and skin and its possible role in ion homeostasis. Front Physiol 1

  • Sakamoto T, Kozaka T, Takahashi A, Kawauchi H, Ando M (2001) Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture 193:347–354. doi:10.1016/s0044-8486(00)00471-3

    Article  CAS  Google Scholar 

  • Shen WP, Horng JL, Lin LY (2011) Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. Am J Physiol 300:R858–R868. doi:10.1152/ajpregu.00705.2010

    CAS  Google Scholar 

  • Silva P, Solomon R, Spokes K, Epstein FH (1977) Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport. J Exp Zool 199:419–426. doi:10.1002/jez.1401990316

    Article  CAS  PubMed  Google Scholar 

  • Sweadner KJ, Rael E (2000) The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56. doi:10.1006/geno.2000.6274

    Article  CAS  PubMed  Google Scholar 

  • Takehana Y, Nagai N, Matsuda M, Tsuchiya K, Sakaizumi M (2003) Geographic variation and diversity of the cytochrome b gene in Japanese wild populations of Medaka, Oryzias latipes. Zool Sci 20:1279–1291. doi:10.2108/zsj.20.1279

    Article  CAS  PubMed  Google Scholar 

  • Tipsmark CK (2008) Identification of FXYD protein genes in a teleost: tissue-specific expression and response to salinity change. Am J Physiol 294:R1367–R1378. doi:10.1152/ajpregu.00454.2007

    CAS  Google Scholar 

  • Tipsmark CK, Madsen SS (2001) Rapid modulation of Na+/K+-ATPase activity in osmoregulatory tissues of a salmonid fish. J Exp Biol 204:701–709

    CAS  PubMed  Google Scholar 

  • Tipsmark CK, Madsen SS (2009) Distinct hormonal regulation of Na+, K+-atpase genes in the gill of Atlantic salmon (Salmo salar L.). J Endocrinol 203:301–310. doi:10.1677/joe-09-0281

    Article  CAS  PubMed  Google Scholar 

  • Tipsmark CK, Mahmmoud YA, Borski RJ, Madsen SS (2010a) FXYD-11 associates with Na+-K+-ATPase in the gill of Atlantic salmon: regulation and localization in relation to changed ion-regulatory status. Am J Physiol 299:R1212–R1223. doi:10.1152/ajpregu.00015.2010

    Article  CAS  Google Scholar 

  • Tipsmark CK, Sorensen KJ, Hulgard K, Madsen SS (2010b) Claudin-15 and-25b expression in the intestinal tract of Atlantic salmon in response to seawater acclimation, smoltification and hormone treatment. Comp Biochem Physiol A 155:361–370. doi:10.1016/j.cbpa.2009.11.025

    Article  Google Scholar 

  • Tipsmark CK, Breves JP, Seale AP, Lerner DT, Hirano T, Grau EG (2011) Switching of Na+, K+ -ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J Endocrinol 209:237–244. doi:10.1530/joe-10-0495

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res. doi:10.1093/nar/gks596

    PubMed  PubMed Central  Google Scholar 

  • Urbina MA, Schulte PM, Bystriansky JS, Glover CN (2013) Differential expression of Na+, K+-ATPase α-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus. J Comp Physiol B 183:345–357. doi:10.1007/s00360-012-0719-y

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

  • Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP (2009) Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol 296:R1650–R1660. doi:10.1152/ajpregu.00119.2009

    CAS  Google Scholar 

  • Wilson JM, Laurent P, Tufts BL, Benos DJ, Donowitz M, Vogl AW, Randall DJ (2000) NaCl uptake by the branchial epithelium in freshwater teleost fish: An immunological approach to ion-transport protein localization. J Exp Biol 203:2279–2296

    CAS  PubMed  Google Scholar 

  • Yang WK, Kang CK, Chang CH, Hsu AD, Lee TH, Hwang PP (2013) Expression Profiles of Branchial FXYD Proteins in the Brackish Medaka Oryzias dancena: a potential saltwater fish model for studies of osmoregulation. PLoS One 8:e55470. doi:10.1371/journal.pone.0055470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Foundation [IBN 12-51616] and the Arkansas Biosciences Institute to C. K. T. The Fulbright Commission supported S. S. M. with a visiting professor scholarship. The Cell and Molecular Biology program at the University of Arkansas supported R. J. B. with a research stipend. The authors would like to thank Ms. R. T. Trubitt for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian K. Tipsmark.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bollinger, R.J., Madsen, S.S., Bossus, M.C. et al. Does Japanese medaka (Oryzias latipes) exhibit a gill Na+/K+-ATPase isoform switch during salinity change?. J Comp Physiol B 186, 485–501 (2016). https://doi.org/10.1007/s00360-016-0972-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0972-6

Keywords

Navigation