Skip to main content
Log in

Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg−1 icv) and WAY 161503 (1 mg kg−1 ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg−1 ip and 30 μg kg−1 icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg−1) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldegunde M, Mancebo M (2006) Effects of neuropeptide Y on food intake and brain biogenic amines in the rainbow trout (Oncorhynchus mykiss). Peptides 27:719–727

    Article  CAS  PubMed  Google Scholar 

  • Anelli M, Bizzi A, Caccia S, Codegoni AM, Fracasso C, Garattini S (1992) Anorexigenic activity of fluoxetine and norfluoxetine in mice, rats and guinea-pigs. J Pharm Pharmacol 44:696–698

    Article  CAS  PubMed  Google Scholar 

  • Arkle M, Ebenezer IS (2000) Ipsapirone suppresses food intake in food-deprived rats by an action at 5-HT receptors 1A. Eur J Pharmacol 408:273–276

    Article  CAS  PubMed  Google Scholar 

  • Bernier NJ (2010) Food intake regulation and disorders. In: Leatherhead J, Woo PTK (eds) Fish diseases and disorders, Vol. 2, non-infectious disorders, 2nd edn. CABI, Wallingford, pp 238–266

    Chapter  Google Scholar 

  • Bernier NJ, Peter RE (2001) Appetite-suppressing effects of urotensin I and corticotropin-releasing hormone in goldfish (Carassius auratus). Neuroendocrinology 73:248–260

    Article  CAS  PubMed  Google Scholar 

  • Bernier NJ, Alderman SL, Bristow EN (2008) Heads or tails? Stressor-specific expression of corticotropin-releasing factor and urotensin I in the preoptic area and caudal neurosecretory system of rainbow trout. J Endocrinol 196:637–648

    Article  CAS  PubMed  Google Scholar 

  • Butt I, Hong A, Di J, Aracena S, Banerjee P, Shen Ch (2014) The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor. Neuropeptides 48:313–318

    Article  CAS  PubMed  Google Scholar 

  • Cansell C, Denis RG, Joly-Amado A, Castel J, Luquet S (2012) Arcuate AgRP neurons and the regulation of energy balance. Front Endocrinol (Lausanne) 3:1–7

    Google Scholar 

  • Cerdá-Reverter JM, Schiöth HB, Peter RE (2003) The central melanocortin system regulates food intake in goldfish. Regul Pept 115:101–113

    Article  PubMed  Google Scholar 

  • Cerdá-Reverter JM, Agulleiro MJ, Guillot R, Sánchez E, Ceinos R, Rotllant J (2011) Fish melanocortin system. Eur J Pharmacol 660:53–60

    Article  PubMed  Google Scholar 

  • Choi SH, Kwon BS, Lee S, Houpt TA, Lee HT, Kim DG, Jahng JW (2003) Systemic 5-hydroxy-l-tryptophan down-regulates the arcuate CART mRNA level in rats. Regul Pept 115:73–80

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Blake V, Cole S, Fernstrom JD (2006) Effects of chronic fenfluramine administration on hypothalamic neuropeptide mRNA expression. Brain Res 1087:83–86

    Article  CAS  PubMed  Google Scholar 

  • Collin M, Bäckberg M, Onnestam K, Meister B (2002) 5-HT1A receptor immunoreactivity in hypothalamic neurons involved in body weight control. NeuroReport 13:945–951

    Article  CAS  PubMed  Google Scholar 

  • Conde-Sieira M, Agulleiro MJ, Aguilar AJ, Míguez JM, Cerdá-Reverter JM, Soengas JL (2010) Effect of different glycaemic conditions on gene expression of neuropeptides involved in control of food intake in rainbow trout; interaction with stress. J Exp Biol 213:3858–3865

    Article  CAS  PubMed  Google Scholar 

  • Cone RD, Lu D, Koppula S, Vage DI, Klungland H, Boston B, Chen W, Orth DN, Pouton C, Kesterson RA (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51:287–317

    CAS  PubMed  Google Scholar 

  • Currie PJ (2003) Integration of hypothalamic feeding and metabolic signals: focus on neuropeptide Y. Appetite 41:335–337

    Article  CAS  PubMed  Google Scholar 

  • Currie PJ, Coiro CD, Niyomchai T, Lira A, Farahmand F (2002) Hypothalamic paraventricular 5-hydroxytryptamine: receptor-specific inhibition of NPY-stimulated eating and energy metabolism. Pharmacol Biochem Behav 71:709–716

    Article  CAS  PubMed  Google Scholar 

  • De Pedro N, Alonso-Gomez AL, Gancedo B, Delgado MJ, Alonso-Bedate M (1993) Role of corticotropin-releasing factor (CRF) as a food intake regulator in goldfish. Physiol Behav 53:517–520

    Article  PubMed  Google Scholar 

  • De Pedro N, Gancedo B, Alonso-Gómez AL, Delgado MJ, Alonso-Bedate M (1995) Alterations in food intake and thyroid tissue content by corticotropin-releasing factor in Tinca tinca. Rev Esp Fisiol 51:71–76

    PubMed  Google Scholar 

  • De Pedro N, Pinillos ML, Valenciano AI, Alonso-Bedate M, Delgado MJ (1998) Inhibitory effect of serotonin on feeding behavior in goldfish: involvement of CRF. Peptides 19:505–511

    Article  PubMed  Google Scholar 

  • Donovan MH, Tecott LH (2013) Serotonin and the regulation of mammalian energy balance. Front Neurosci 7:1–15

    Article  Google Scholar 

  • Dryden S, Frankish HM, Wang Q, Pickavance L, Williams G (1996) The serotonergic agent fluoxetine reduces neuropeptide Y levels and neuropeptide Y secretion in the hypothalamus of lean and obese rats. Neuroscience 72:557–566

    Article  CAS  PubMed  Google Scholar 

  • Dutia R, Kim AJ, Modes M, Rothlein R, Shen JM, Tian YE, Ihbais J, Victory SF, Valcarce C, Wardlaw SL (2013) Effects of AgRP inhibition on energy balance and metabolism in rodent models. PLoS One 8(6):e65317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebenezer IS, Arkle MJ, Tite RM (2007) 8-Hydroxy-2-(di-n-propylamino)-tetralin inhibits food intake in fasted rats by (200an action at 5-HT1A receptors. Methods Find Exp Clin Pharmacol 29:269–272

    Article  CAS  PubMed  Google Scholar 

  • Feijó FM, Bertoluci MC, Reis C (2011) Serotonin and hypothalamic control of hunger: a review. Rev Assoc Med Bras 57:74–77

    Google Scholar 

  • Garfield AS, Heisler LK (2009) Pharmacological targeting of the serotonergic system for the treatment of obesity. J Physiol Lond 587:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerling JJ, Wang Y, Havekes LM, Romijn JA, Rensen PCN (2013) Acute central neuropeptide Y administration increases food intake but does not affect hepatic very low-density lipoprotein (Vldl) production in mice. PLoS One 8(2):e55217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorissen MHAG, Flik G, Huising MO (2006) Peptides and proteins regulating food intake: a comparative view. Anim Biol 56:447–473

    Article  Google Scholar 

  • Hagan MM, Rushing PA, Pritchard LM, Schwartz MW, Strack AM, Van Der Ploeg LH, Woods SC, Seeley RJ (2000) Long-term orexigenic effects of AgRP-(83-132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol Regul Integr Comp Physiol 279:R47–R52

    CAS  PubMed  Google Scholar 

  • Heisler LK, Cowley MA, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB, Marcus JN, Holstege H et al (2002) Activation of central melanocortin pathways by fenfluramine. Science 297:609–611

    Article  CAS  PubMed  Google Scholar 

  • Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, Liu HY, Zigman JM, Balthasar N, Kishi T et al (2006) Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51:239–249

    Article  CAS  PubMed  Google Scholar 

  • Kask A, Rägo L, Harro J (1998) Evidence for involvement of neuropeptide Y receptors in the regulation of food intake: studies with Y1-selective antagonist BIBP3226. Br J Pharmacol 124:1507–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam DD, Przydzial MJ, Ridley SH, Yeo GSH, Rochford JJ, O’Rahilly S, Heisler LK (2008) Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology 149:1323–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Feuvre RA, Aisenthal L, Rothwell NJ (1991) Involvement of corticotrophin releasing factor (CRF) in the thermogenic and anorexic actions of serotonin (5-HT) and related compounds. Brain Res 555:245–250

    Article  PubMed  Google Scholar 

  • Leder EH, Silverstein JT (2006) The pro-opiomelanocortin genes in rainbow trout (Oncorhynchus mykiss): duplications, splice variants, and differential expression. J Endocrinol 188:355–363

    Article  CAS  PubMed  Google Scholar 

  • Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL (2012) Evidence of a metabolic fatty acid-sensing system in the hypothalamus and Brockmann bodies of rainbow trout: implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol 302:R1340–R1350

    Article  PubMed  Google Scholar 

  • Lim JE, Porteus CS, Bernier NJ (2013) Serotonin directly stimulates cortisol secretion from the interrenals in goldfish. Gen Comp Endocrinol 192:246–255

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Volkoff H, Narnaware Y, Bernier NJ, Peyon P, Peter RE (2000) Brain regulation of feeding behavior and food intake in fish. Comp Biochem Physiol A Mol Integr Physiol 126:415–434

    Article  CAS  PubMed  Google Scholar 

  • Lu X-Y, Barsh GS, Akil H, Watson SJ (2003) Interaction between α-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo pituitary-adrenal responses. J Neurosci 23:7863–7872

    CAS  PubMed  Google Scholar 

  • MacDonald LE, Alderman SL, Kramer S, Woo PTK, Bernier NJ (2014) Hypoxemia-induced leptin secretion: a mechanism for the control of food intake in diseased fish. J Endocrinol 221:441–445

    Article  CAS  PubMed  Google Scholar 

  • Mancebo MJ, Ceballos FC, Pérez-Maceira J, Aldegunde M (2013) Hypothalamic neuropeptide Y (NPY) gene expression is not affected by central serotonin in the rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 166:186–190

    Article  CAS  PubMed  Google Scholar 

  • Marvin E, Scrogin K, Dudás B (2010) Morphology and distribution of neurons expressing serotonin 5-HT1A receptors in the rat hypothalamus and the surrounding diencephalic and telencephalic areas. J Chem Neuroanat 39:235–241

    Article  CAS  PubMed  Google Scholar 

  • Matsuda K (2009) Recent advances in the regulation of feeding behavior by neuropeptides in fish. Ann N Y Acad Sci 1163:241–250

    Article  CAS  PubMed  Google Scholar 

  • Matsuda K (2013) Regulation of feeding behavior and psychomotor activity by corticotropin-releasing hormone (CRH) in fish. Front Neurosci 7(91):1–5

    Google Scholar 

  • Matsuda K, Kojima K, Shimakura S, Wada K, Maruyama K, Uchiyama M, Sakae Kikuyama S, Shioda S (2008) Corticotropin-releasing hormone mediates α-melanocyte-stimulating hormone-induced anorexigenic action in goldfish. Peptides 29:1930–1936

    Article  CAS  PubMed  Google Scholar 

  • Mennigen JA, Harris EA, Chang JP, Moon TW, Trudeau VL (2009) Fluoxetine affects weight gain and expression of feeding peptides in the female goldfish brain. Regul Pept 155:99–104

    Article  CAS  PubMed  Google Scholar 

  • Miryala CSJ, Maswood N, Uphouse L (2011) Fluoxetine prevents 8-OH-DPAT-induced hyperphagia in Fischer inbred rats. Pharmacol Biochem Behav 98:311–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashita K, Jordal AE, Nilsen TO, Stefansson SO, Kurokawa T, Björnsson BT, Moen AG, Rønnestad I (2011) Leptin reduces Atlantic salmon growth through the central pro-opiomelanocortin pathway. Comp Biochem Physiol A Mol Integr Physiol 158:79–86

    Article  PubMed  Google Scholar 

  • Ni YG, Miledi R (1997) Blockage of 5HT2C serotonin receptors by fluoxetine (Prozac). Proc Natl Acad Sci 94:2036–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega VA, Lovejoy DA, Bernier NJ (2013) Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Front Neurosci 196:1–10

    Google Scholar 

  • Pérez-Maceira JJ, Mancebo MJ, Aldegunde M (2012) Serotonin-induced brain glycogenolysis in rainbow trout (Oncorhynchus mykiss). J Exp Biol 215:2969–2979

    Article  PubMed  Google Scholar 

  • Pérez-Maceira JJ, Mancebo MJ, Aldegunde M (2014) The involvement of 5-HT-like receptors in the regulation of food intake in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 161:1–6

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Xue C, Bosch MA, Murphy JG, Fan W, Rønnekleiv OK, Kelly MJ (2007) Serotonin 5-hydroxytryptamine2C receptor signaling in hypothalamic proopiomelanocortin neurons: role in energy homeostasis in females. Mol Pharmacol 72:885–896

    Article  CAS  PubMed  Google Scholar 

  • Rochester JA, Kirchner JT (1999) Ecstasy (3,4-methylenedioxymethamphetamine): history, neurochemistry, and toxicology. J Am Board Fam Pract 12:137–142

    Article  CAS  PubMed  Google Scholar 

  • Ronnan PJ, Summers CH (2011) Molecular signalling and translational significance of the corticotrophin releasing factor system (2011). Prog Mol Biol Transl Sci 98:235–292

    Article  Google Scholar 

  • Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA et al (1998) A C-terminal fragment of agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 139:4428–4431

    Article  CAS  PubMed  Google Scholar 

  • Ruibal C, Soengas JL, Aldegunde M (2002) Brain serotonin and the control of food intake in rainbow trout (Oncorhynchus mykiss): effects of changes in plasma glucose levels. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:479–484

    Article  CAS  PubMed  Google Scholar 

  • Schjolden J, Schiöth HB, Larhammar D, Winberg S, Larson ET (2009) Melanocortin peptides affect the motivation to feed in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 160:134–138

    Article  CAS  PubMed  Google Scholar 

  • Simansky KJ (1996) Serotonergic control of the organization of feeding and satiety. Behav Brain Res 73:37–42

    Article  CAS  PubMed  Google Scholar 

  • Small CJ, Kim MS, Stanley SA, Mitchell JR, Murphy K, Morgan DG, Ghatei MA, Bloom SR (2001) Effects of chronic central nervous system administration of agouti-related protein in pairfed animals. Diabetes 50:248–254

    Article  CAS  PubMed  Google Scholar 

  • Smith BK, York DA, Bray GA (1999) Activation of hypothalamic serotonin receptors reduced intake of dietary fat and protein but not carbohydrate. Am J Physiol Regul Integr Comp Physiol 277:R802–R811

    CAS  Google Scholar 

  • Soengas JL (2014) Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A review. Gen Comp Endocrinol 205:36–48

    Article  CAS  PubMed  Google Scholar 

  • Steffens SM, da Cunha IC, Beckman D, Lopes APF, Faria MS, Marino-Neto J, Paschoalini MA (2008) The effects of metergoline and 8-OH-DPAT injections into arcuate nucleus and lateral hypothalamic area on feeding in female rats during the estrous cycle. Physiol Behav 95:484–491

    Article  CAS  PubMed  Google Scholar 

  • Steffens SM, Beckman D, Faria MS, Marino-Neto J, Paschoalini MA (2010) WAY100635 blocks the hypophagia induced by 8-OH-DPAT in the hypothalamic nuclei. Physiol Behav 99:632–637

    Article  CAS  PubMed  Google Scholar 

  • Tecott LH (2007) Serotonin and the orchestration of energy balance. Cell Metab 6:352–361

    Article  CAS  PubMed  Google Scholar 

  • Tubío RI, Pérez-Maceira J, Aldegunde M (2010) Homeostasis of glucose in the rainbow trout (Oncorhynchus mykiss Walbaum): the role of serotonin. J Exp Biol 213:1813–1821

    Article  PubMed  Google Scholar 

  • Valassi E, Scacchi M, Cavagnini F (2008) Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis 18:158–168

    Article  CAS  PubMed  Google Scholar 

  • Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142:3–19

    Article  CAS  PubMed  Google Scholar 

  • Volkoff H, Xu M, MacDonald E, Hoskins L (2009) Aspects of the hormonal regulation of appetite in fish with emphasis on goldfish, Atlantic cod and winter flounder: notes on actions and responses to nutritional, environmental and reproductive changes. Comp Biochem Physiol A Mol Integr Physiol 153:8–12

    Article  PubMed  Google Scholar 

  • Wurtman RJ, Wurtman JJ (1998) Serotonergic mechanisms and obesity. J Nutr Biochem 9:511–515

    Article  CAS  Google Scholar 

  • Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, Choi MJ, Anderson JG, Heisler LK, Zigman JM, Lowell BB et al (2008) 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo G, Heisler L (2012) Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, Oksanen LJ, Thornton-Jones ZD, Clifton PG, Yueh C-Y, Evans ML et al (2007) Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab 6:398–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from Ministerio de Economía y Competitividad and European Fund for Regional Development (AGL2013-46448-3-1-R and FEDER) to J.L.S. C.O.-R. was recipient of a predoctoral fellowship from Ministerio de Economía y Competitividad (BES‐2014‐068040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Aldegunde.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Maceira, J.J., Otero-Rodiño, C., Mancebo, M.J. et al. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus. J Comp Physiol B 186, 313–321 (2016). https://doi.org/10.1007/s00360-016-0961-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0961-9

Keywords

Navigation