Skip to main content
Log in

Identification and characterisation of hemocyanin of the fish louse Argulus (Crustacea: Branchiura)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Hemocyanin transports oxygen in the hemolymph of many arthropod species. Within the crustaceans, this copper-containing protein was thought to be restricted to Malacostraca, while other crustacean classes were assumed to employ hemoglobin or lack any respiratory protein. Only recently it has become evident that hemocyanins also occur in Remipedia and Ostracoda. Here we report for the first time the identification and characterisation of hemocyanin in the fish louse Argulus, which belongs to the class of Branchiura. This finding indicates that hemocyanin was the principal oxygen carrier in the stem lineage of the pancrustaceans, but has been lost independently multiple times in crustacean taxa. We obtained the full-length cDNA sequences of two hemocyanin subunits of Argulus foliaceus by a combination of RT-PCR, RACE and Illumina sequencing of the transcriptome. In addition, one full-length and one partial cDNA sequence were derived from the transcriptome data of Argulus siamensis. Western blot analysis confirmed the presence of at least two hemocyanin subunits in A. foliaceus, which are expressed at the mRNA level at a 1:3.5 ratio. The addition to the branchiuran hemocyanin subunits to a multiple sequence alignment of arthropod, hemocyanins improved the phylogenetic resolution within the pancrustacean hemocyanins. Malacostracan, ostracod and branchiuran hemocyanins are distinct from the hexapod and remipede hemocyanins, reinforcing the hypothesis of a close relationship of Remipedia and Hexapoda. Notably, the ostracod hemocyanins are paraphyletic with respect to the branchiuran hemocyanins, indicating ancient divergence and differential loss of distinct subunit types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BPP:

Bayesian posterior probability

Hc:

Hemocyanin

PHc:

Pseudo-hemocyanin

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Beintema JJ, Stam WT, Hazes B, Smidt MP (1994) Evolution of arthropod hemocyanins and insect storage proteins (hexamerins). Mol Biol Evol 11:493–503

    PubMed  CAS  Google Scholar 

  • Burmester T (1999a) Evolution and function of the insect hexamerins. Eur J Entomol 96:213–225

    CAS  Google Scholar 

  • Burmester T (1999b) Identification, molecular cloning, and phylogenetic analysis of a non-respiratory pseudo-hemocyanin of Homarus americanus. J Biol Chem 274:13217–13222

    Article  PubMed  CAS  Google Scholar 

  • Burmester T (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18:184–195

    Article  PubMed  CAS  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol [B] 172:95–107

    Article  CAS  Google Scholar 

  • Burmester T (2015) Evolution of respiratory proteins across the Pancrustacea. Integr Comp Biol 55:792–801

    Article  PubMed  Google Scholar 

  • Burmester T, Scheller K (1996) Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. J Mol Evol 42:713–728

    Article  PubMed  CAS  Google Scholar 

  • Depledge MH, Bjerregaard P (1989) Haemolymph protein composition and copper levels in decapod crustaceans. Helgoländer Meeresuntersuchungen 43:207–223

    Article  Google Scholar 

  • Destoumieux-Garzon D, Saulnier D, Garnier J, Jouffrey C, Bulet P, Bachere E (2001) Crustacean immunity. Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J Biol Chem 276:47070–47077

    Article  PubMed  CAS  Google Scholar 

  • Dolashka-Angelova P, Beltramini M, Dolashki A, Salvato B, Hristova R, Voelter W (2001) Carbohydrate composition of Carcinus aestuarii hemocyanin. Arch Biochem Biophys 389:153–158

    Article  PubMed  CAS  Google Scholar 

  • Dolashka-Angelova P, Dolashki A, Savvides SN, Hristova R, Van Beeumen J, Voelter W, Devreese B, Weser U, Di Muro P, Salvato B, Stevanovic S (2005) Structure of hemocyanin subunit CaeSS2 of the crustacean Mediterranean crab Carcinus aestuarii. J Biochem 138:303–312

    Article  PubMed  CAS  Google Scholar 

  • Durstewitz G, Terwilliger NB (1997) Developmental changes in hemocyanin expression in the Dungeness crab, Cancer magister. J Biol Chem 272:4347–4350

    Article  PubMed  CAS  Google Scholar 

  • Dzik J (2008) Gill structure and relationships of the Triassic cycloid crustaceans. J Morphol 269:1501–1519

    Article  PubMed  Google Scholar 

  • Ertas B, von Reumont BM, Wagele JW, Misof B, Burmester T (2009) Hemocyanin suggests a close relationship of remipedia and hexapoda. Mol Biol Evol 26:2711–2718

    Article  PubMed  CAS  Google Scholar 

  • Fox HM (1949) Hæmoglobin in crustacea. Nature 164:59

    Article  PubMed  CAS  Google Scholar 

  • Fox HM (1957) Hæmoglobin in branchiura. Nature 179:873

    Article  Google Scholar 

  • Glazer L, Tom M, Weil S, Roth Z, Khalaila I, Mittelman B, Sagi A (2013) Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith. J Exp Biol 216:1898–1904

    Article  PubMed  CAS  Google Scholar 

  • Hagner-Holler S, Schoen A, Erker W, Marden JH, Rupprecht R, Decker H, Burmester T (2004) A respiratory hemocyanin from an insect. Proc Natl Acad Sci USA 101:871–874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herberts C, de Frescheville J (1981) Occurrence of hemocyanin in the rhizocephalan crustacea Sacculina carcini Thompson. Comp Biochem Physiol B 70:657–659

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

    Article  PubMed  CAS  Google Scholar 

  • Kusche K, Ruhberg H, Burmester T (2002) A hemocyanin from the Onychophora and the emergence of respiratory proteins. Proc Natl Acad Sci USA 99:10545–10548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lämmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Linzen B, Soeter NM, Riggs AF, Schneider HJ, Schartau W, Moore MD, Yokota E, Behrens PQ, Nakashima H, Takagi T et al (1985) The structure of arthropod hemocyanins. Science 229:519–524

    Article  PubMed  CAS  Google Scholar 

  • Mangum CP (1983) Oxygen transport in the blood. In: Bliss DE, Mantel LH (eds) The biology of crustacea. Academic Press, New York, pp 373–429

    Google Scholar 

  • Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248:R505–R514

    PubMed  CAS  Google Scholar 

  • Markl J (1986) Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biol Bull (Woods Hole, MA) 171:90–115

    Article  CAS  Google Scholar 

  • Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. Adv Comp Environm Physiol 13:325–376

    Article  CAS  Google Scholar 

  • Markl J, Stöcker W, Runzler R, Precht E (1986) Immunological correspondences between the hemocyanin subunits of 86 arthropods: evolution of a multigene protein family. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Heidelberg, pp 281–292

    Chapter  Google Scholar 

  • Markl J, Burmester T, Decker H, Savel-Niemann A, Harris JR, Süling M, Naumann U, Scheller K (1992) Quaternary and subunit structure of Calliphora arylphorin as deduced from electron microscopy, electrophoresis, and sequence similarities with arthropod hemocyanin. J Comp Physiol [B] 162:665–680

    Article  CAS  Google Scholar 

  • Marxen JC, Pick C, Kwiatkowski M, Burmester T (2013) Molecular characterization and evolution of haemocyanin from the two freshwater shrimps Caridina multidentata (Stimpson, 1860) and Atyopsis moluccensis (De Haan, 1849). J Comp Physiol [B] 183:613–624

    Article  CAS  Google Scholar 

  • Marxen JC, Pick C, Oakley TH, Burmester T (2014) Occurrence of hemocyanin in ostracod crustaceans. J Mol Evol 79:3–11

    Article  PubMed  CAS  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp 1–8

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Osaki T, Kawabata S (2001) Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 276:27166–27170

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HBJ (1997) GeneDoc: analysis and visualization of genetic variation

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Pick C, Schneuer M, Burmester T (2009) The occurrence of hemocyanin in Hexapoda. FEBS J 276:1930–1941

    Article  PubMed  CAS  Google Scholar 

  • Pick C, Schneuer M, Burmester T (2010) Ontogeny of hemocyanin in the ovoviviparous cockroach Blaptica dubia suggests an embryo-specific role in oxygen supply. J Insect Physiol 56:455–460

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T (2011) Dating the arthropod tree based on large-scale transcriptome data. Mol Phylogenet Evol 61:880–887

    Article  PubMed  Google Scholar 

  • Sahoo PK, Kar B, Mohapatra A, Mohanty J (2013) De novo whole transcriptome analysis of the fish louse, Argulus siamensis: first molecular insights into characterization of Toll downstream signalling molecules of crustaceans. Exp Parasitol 135:629–641

    Article  PubMed  CAS  Google Scholar 

  • Sánchez D, Ganfornina MD, Gutierrez G, Bastiani MJ (1998) Molecular characterization and phylogenetic relationships of a protein with potential oxygen-binding capabilities in the grasshopper embryo. A hemocyanin in insects? Mol Biol Evol 15:415–426

    Article  PubMed  Google Scholar 

  • Scherbaum S, Ertas B, Gebauer W, Burmester T (2010) Characterization of hemocyanin from the peacock mantis shrimp Odontodactylus scyllarus (Malacostraca: Hoplocarida). J Comp Physiol [B] 180:1235–1245

    Article  CAS  Google Scholar 

  • Terwilliger NB (1991) Arthropod (Cyamus scammoni, Amphipoda) hemoglobin structure and function. In: Vinogradov SN, Kapp OH (eds) Structure and function of invertebrate oxygen carriers. Springer-Verlag, New York, pp 59–63

    Chapter  Google Scholar 

  • Terwilliger NB (2007) Hemocyanins and the immune response: defense against the dark arts. Integr Comp Biol 47:662–665

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger N (2008) Whale rider: the co-occurrence of haemoglobin and haemocyanin in Cyamus scammoni. In: Bolognesi M, di Prisco G, Verde C (eds) Protein reviews, vol 9., Dioxygen binding and sensing proteinsSpringer Verlag, Milan, pp 203–209

    Google Scholar 

  • Terwilliger N, Dumler K (2001) Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition. J Exp Biol 204:1013–1020

    PubMed  CAS  Google Scholar 

  • Terwilliger NB, Dangott L, Ryan M (1999) Cryptocyanin, a crustacean molting protein: evolutionary link with arthropod hemocyanins and insect hexamerins. Proc Natl Acad Sci USA 96:2013–2018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terwilliger NB, Ryan MC, Towle D (2005) Evolution of novel functions: cryptocyanin helps build new exoskeleton in Cancer magister. J Exp Biol 208:2467–2474

    Article  PubMed  CAS  Google Scholar 

  • Tseneklidou-Stoeter D, Gerwig GJ, Kamerling JP, Spindler KD (1995) Characterization of N-linked carbohydrate chains of the crayfish, Astacus leptodactylus hemocyanin. Biol Chem Hoppe Seyler 376:531–537

    Article  PubMed  CAS  Google Scholar 

  • van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81

    Article  PubMed  Google Scholar 

  • von Reumont BM, Jenner RA, Wills MA, Dell’ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29:1031–1045

    Article  Google Scholar 

  • Weber RE, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81:569–628

    PubMed  CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jan Kemnitz for his help with the collection of the A. foliaceus specimens. This work was supported by the Deutsche Forschungsgemeinschaft (BU 956/14). We thank Janus Borner for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Burmester.

Additional information

Communicated by G. Heldmaier.

See Supplemental Table 2 for the abbreviations of the proteins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinnow, P., Fabrizius, A., Pick, C. et al. Identification and characterisation of hemocyanin of the fish louse Argulus (Crustacea: Branchiura). J Comp Physiol B 186, 161–168 (2016). https://doi.org/10.1007/s00360-015-0943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0943-3

Keywords

Navigation