Skip to main content
Log in

Carotenoid supplementation and GnRH challenges influence female endocrine physiology, immune function, and egg-yolk characteristics in Japanese quail (Coturnix japonica)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Androgens and carotenoids circulating in plasma affect the physiology and behavior of vertebrates. Much is known about control mechanisms and functions of each of these substances, yet their interactive effects are not well understood. Here we examine possible additive, multiplicative, and interactive effects of testosterone and carotenoids on female endocrine physiology, immunocompetence, and investment in eggs by simultaneously manipulating levels of testosterone [via gonadotropin releasing hormone (GnRH) challenges] and carotenoids (via diet supplementation) in captive female Japanese quail (Coturnix japonica). Females were randomly assigned to one of four treatments: carotenoid supplementation, GnRH challenge, GnRH challenge + carotenoid supplementation, or control. Carotenoid supplementation significantly increased circulating plasma carotenoid levels and acquired immune system performance, but not innate immunity. GnRH challenges elevated circulating testosterone and carotenoid levels, and induced immunosuppression in females. However, females in the GnRH challenge + carotenoid supplementation treatment had higher cell-mediated immune responses than control females and similar responses to those of carotenoid-supplemented females. Hence, availability of carotenoids in female quail seemed to counteract immunosuppressive effects of GnRH challenges. Our results provide further evidence for synergistic effects of carotenoids and testosterone on endocrine physiology and immune function in female birds. Elevated plasma testosterone or carotenoids levels resulted in increased deposition of those compounds to eggs, respectively. Furthermore, because we found that concentrations of testosterone and carotenoids in yolks were correlated within each treatment group, differential deposition of hormones and carotenoids in eggs may not only respond to surrounding social and environmental conditions, but also to other components of the egg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo SA (2004) How should behavioural ecologists interpret measurements of immunity? Anim Behav 68:1443–1449

    Article  Google Scholar 

  • Alonso-Alvarez C, Bertrand S, Faivre B, Chastel O, Sorci G (2007) Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc R Soc Ser B Biol Sci 274:819–825

    Article  CAS  Google Scholar 

  • Bertin A, Richard-Yris MA, Houdelier C, Lumineau S, Mostl E, Kuchar A, Hirschenhauser K, Kotrschal K (2008) Habituation to humans affects yolk steroid levels and offspring phenotype in quail. Horm Behav 54:396–402

    Article  PubMed  CAS  Google Scholar 

  • Biard C, Surai PF, Møller AP (2007) An analysis of pre- and post-hatching maternal effects mediated by carotenoids in the blue tit. J Evol Biol 20:326–339

    Article  PubMed  CAS  Google Scholar 

  • Blas J, Pérez-Rodriguez L, Bortolotti GR, Viñuela J, Marchant TA (2006) Testosterone increases bioavailability of carotenoids: insights into the honesty of sexual signaling. Proc Natl Acad Sci USA 103:18633–18637

    Article  PubMed  CAS  Google Scholar 

  • Blount JD, Surai PF, Nager RG, Houston DC, Møller AP, Trewby ML, Kennedy MW (2002) Carotenoids and egg quality in the lesser black-backed gull Larus fuscus: a supplemental feeding study of maternal effects. Proc R Soc Lond Ser B Biol Sci 269:29–36

    Article  CAS  Google Scholar 

  • Blount JD, Houston DC, Moller AP, Wright J (2003a) Do individual branches of immune defence correlate? A comparative case study of scavenging and non-scavenging birds. Oikos 102:340–350

    Article  Google Scholar 

  • Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003b) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127

    Article  PubMed  CAS  Google Scholar 

  • Blount JD, Houston DC, Surai PF, Møller AP (2004) Egg-laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. Proc R Soc Lond Ser B Biol Sci 271:S79–S81

    Article  CAS  Google Scholar 

  • Boonstra TA, Clark ME, Reed WL (2009) Maternal resource variation across the laying sequence in Canada geese Branta canadensis maxima. J Avian Biol 40:520–528

    Article  Google Scholar 

  • Bortolotti GR, Negro JJ, Surai PF, Prieto P (2003) Carotenoids in eggs and plasma of red-legged partridges: effects of diet and reproductive output. Physiol Biochem Zool 76:367–374

    Article  PubMed  CAS  Google Scholar 

  • Boughton RK, Bridge ES, Schoech SJ (2007) Energetic trade-offs between immunity and reproduction in male Japanese quail (Coturnix coturnix). J Exp Zool Part A 307A:479–487

    Article  CAS  Google Scholar 

  • Caprio E, Ellena I, Rolando A (2009) Native oak retention as a key factor for the conservation of winter bird diversity in managed deciduous forests in northern Italy. Landsc Ecol 24:65–76

    Article  Google Scholar 

  • Casto JM, Nolan V, Ketterson ED (2001) Steroid hormones and immune function: experimental studies in wild and captive dark-eyed juncos (Junco hyemalis). Am Nat 157:408–420

    Article  PubMed  CAS  Google Scholar 

  • Cawthorn JM, Morris DL, Ketterson ED, Nolan V (1998) Influence of experimentally elevated testosterone on nest defence in dark-eyed juncos. Anim Behav 56:617–621

    Article  PubMed  Google Scholar 

  • Clotfelter ED, O’Neal DM, Gaudioso JM, Casto JM, Parker-Renga IM, Snajdr EA, Duffy DL, Nolan V, Ketterson ED (2004) Consequences of elevating plasma testosterone in females of a socially monogamous songbird: evidence of constraints on male evolution? Horm Behav 46:171–178

    Article  PubMed  CAS  Google Scholar 

  • Cucco M, Guasco B, Malacarne G, Ottonelli R, Tanvez A (2008) Yolk testosterone levels and dietary carotenoids influence growth and immunity of grey partridge chicks. Gen Comp Endocrinol 156:418–425

    Article  PubMed  CAS  Google Scholar 

  • Daisley JN, Bromundt V, Mostl E, Kotrschal K (2005) Enhanced yolk testosterone influences behavioral phenotype independent of sex in Japanese quail chicks Coturnix japonica. Horm Behav 47:185–194

    Article  CAS  Google Scholar 

  • Deviche P, Cortez L (2005) Androgen control of immunocompetence in the male house finch, Carpodacus mexicanus Muller. J Exp Biol 208:1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Duffy DL, Bentley GE, Drazen DL, Ball GF (2000) Effects of testosterone on cell-mediated and humoral immunity in non-breeding adult European starlings. Behav Ecol 11:654–662

    Article  Google Scholar 

  • Eising CM, Eikenaar C, Schwbl H, Groothuis TGG (2001) Maternal androgens in black-headed gull (Larus ridibundus) eggs: consequences for chick development. Proc R Soc Lond Ser B Biol Sci 268:839–846

    Article  CAS  Google Scholar 

  • Eising CM, Muller W, Groothuis TGG (2006) Avian mothers create different phenotypes by hormone deposition in their eggs. Biol Lett 2:20–22

    Article  PubMed  Google Scholar 

  • Elekonich MM, Wingfield JC (2000) Seasonality and hormonal control of territorial aggression in female song sparrows (Passeriformes: Emberizidae: Melospiza melodia). Ethology 106:493–510

    Article  Google Scholar 

  • El-Lethey H, Huber-Eicher B, Jungi TW (2003) Exploration of stress-induced immunosuppression in chickens reveals both stress-resistant and stress-susceptible antigen responses. Vet Immunol Immunopathol 95:91–101

    Article  PubMed  CAS  Google Scholar 

  • Ewen JG, Thorogood R, Brekke P, Cassey P, Karadas F, Armstrong DP (2009) Maternally invested carotenoids compensate costly ectoparasitism in the hihi. Proc Natl Acad Sci USA 106:12798–12802

    Article  PubMed  CAS  Google Scholar 

  • Gil D (2003) Golden eggs: maternal manipulation of offspring phenotype by egg androgen in birds. Ardeola 50:281–294

    Google Scholar 

  • Gil D (2008) Hormones in avian eggs: physiology, ecology and behavior. Advances in the study of behavior. Elsevier, San Diego, pp 337–398

    Google Scholar 

  • Gil D, Graves J, Hazon N, Wells A (1999) Male attractiveness and differential testosterone investment in zebra finch eggs. Science 286:126–128

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Biard C, Lacroix A, Spottiswoode CN, Saino N, Puerta M, Møller AP (2007) Evolution of yolk androgens in birds: development, coloniality, and sexual dichromatism. Am Nat 169:802–819

    Article  PubMed  Google Scholar 

  • Goodwin TW (1986) Metabolism, nutrition, and function of carotenoids. Annu Rev Nutr 6:273–297

    Article  PubMed  CAS  Google Scholar 

  • Goymann W, Wingfield JC (2004) Competing females and caring males. Sex steroids in African black coucals, Centropus grillii. Anim Behav 68:733–740

    Article  Google Scholar 

  • Groothuis TGG, von Engelhardt N (2005) Investigating maternal hormones in avian eggs: measurement, manipulation, and interpretation. Ann NY Acad Sci 1046:168–180

    Google Scholar 

  • Groothuis TGG, Muller W, von Engelhardt N, Carere C, Eising C (2005) Maternal hormones as a tool to adjust offspring phenotype in avian species. Neurosci Biobehav Rev 29:329–352

    Article  PubMed  CAS  Google Scholar 

  • Groothuis TGG, Eising CM, Blount JD, Surai P, Apanius V, Dijkstra C, Muller W (2006) Multiple pathways of maternal effects in black-headed gull eggs: constraint and adaptive compensatory adjustment. J Evol Biol 19:1304–1313

    Article  PubMed  CAS  Google Scholar 

  • Hackl R, Bromundt V, Daisley J, Kotrschal K, Mostl E (2003) Distribution and origin of steroid hormones in the yolk of Japanese quail eggs (Coturnix coturnix japonica). J Comp Physiol B Biochem Syst Environ Physiol 173:327–331

    Article  CAS  Google Scholar 

  • Haq AU, Bailey CA, Chinnah A (1996) Effect of beta-carotene, canthaxanthin, lutein, and vitamin E on neonatal immunity of chicks when supplemented in the broiler breeder diets. Poult Sci 75:1092–1097

    Article  PubMed  CAS  Google Scholar 

  • Hasselquist D, Marsh JA, Sherman PW, Wingfield JC (1999) Is avian humoral immunocompetence suppressed by testosterone? Behav Ecol Sociobiol 45:167–175

    Article  Google Scholar 

  • Hau M, Wikelski M, Soma KK, Wingfield JC (2000) Testosterone and year-round territorial aggression in a tropical bird. Gen Comp Endocrinol 117:20–33

    Article  PubMed  CAS  Google Scholar 

  • Hegner RE, Wingfield JC (1987) Social-status and circulating levels of hormones in flocks of house sparrows, Passer domesticus. Ethology 76:1–14

    Article  Google Scholar 

  • Hirschenhauser K, Mostl E, Peczely P, Wallner B, Dittami J, Kotrschal K (2000) Seasonal relationships between plasma and fecal testosterone in response to GnRH in domestic ganders. Gen Comp Endocrinol 118:262–272

    Article  PubMed  CAS  Google Scholar 

  • Huss D, Poynter G, Lansford R (2008) Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Anim 37:513–519

    Article  Google Scholar 

  • Jawor JM, Young R, Ketterson ED (2006) Females competing to reproduce: dominance matters but testosterone may not. Horm Behav 49:362–368

    Article  PubMed  CAS  Google Scholar 

  • Jawor JM, McGlothlin JW, Casto JM, Greives TJ, Snajdr EA, Bentley GE, Ketterson ED (2007) Testosterone response to GnRH in a female songbird varies with stage of reproduction: implications for adult behaviour and maternal effects. Funct Ecol 21:767–775

    Article  Google Scholar 

  • Jayasooriya AP, Weisinger RS, Weisinger HS, Mathai ML, Sinclair AJ (2002) Attraction to orange: sexiness, not gluttony. Science 296:847–848

    Article  PubMed  CAS  Google Scholar 

  • Johnson AL (2000) Reproduction in the female. In: Whittow GC (ed) Sturkie’s avian physiology. Academic Press, San Diego, pp 569–596

    Chapter  Google Scholar 

  • Ketterson ED, Nolan V (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S25

    Article  Google Scholar 

  • Ketterson ED, Nolan V, Wolf L, Ziegenfus C, Dufty AM, Ball GF, Johnsen TS (1991) Testosterone and avian life histories—the effect of experimentally elevated testosterone on corticosterone and body-mass in dark-eyed juncos. Horm Behav 25:489–503

    Article  PubMed  CAS  Google Scholar 

  • Ketterson ED, Nolan V, Sandell M (2005) Testosterone in females: mediator of adaptive traits, constraint on sexual dimorphism, or both? Am Nat 166:S85–S98

    Article  PubMed  Google Scholar 

  • Ketterson ED, Atwell JW, McGlothlin JW (2009) Phenotypic integration and independence: hormones, performance, and response to environmental change. Integr Comp Biol 49:365–379

    Article  PubMed  CAS  Google Scholar 

  • Kingma SA, Komdeur J, Vedder O, von Engelhardt N, Korsten P, Groothuis TGG (2009) Manipulation of male attractiveness induces rapid changes in avian maternal yolk androgen deposition. Behav Ecol 20:172–179

    Article  Google Scholar 

  • Klukowski LA, Cawthorn JM, Ketterson ED, Nolan V (1997) Effects of experimentally elevated testosterone on plasma corticosterone and corticosteroid-binding globulin in dark-eyed juncos (Junco hyemalis). Gen Comp Endocrinol 108:141–151

    Article  PubMed  CAS  Google Scholar 

  • Koutsos EA, Lopez JCG, Klasing KC (2006) Carotenoids from in ovo or dietary sources blunt systemic indices of the inflammatory response in growing chicks (Gallus gallus domesticus). J Nutr 136:1027–1031

    PubMed  CAS  Google Scholar 

  • Krinsky NI (2001) Carotenoids as antioxidants. Nutrition 17:815–817

    Article  PubMed  CAS  Google Scholar 

  • Lacombe D, Cyr A, Matton P (1991) Plasma-Lh and androgen levels in the red-winged blackbird (Agelaius phoeniceus) treated with a potent GnRH analog. Comp Biochem Physiol A Physiol 99:603–607

    Article  CAS  Google Scholar 

  • Langmore NE, Cockrem JF, Candy EJ (2002) Competition for male reproductive investment elevates testosterone levels in female dunnocks, Prunella modularis. Proc R Soc Lond Ser B Biol Sci 269:2473–2478

    Article  CAS  Google Scholar 

  • Lees AC, Peres CA (2008) Avian life-history determinants of local extinction risk in a hyper-fragmented neotropical forest landscape. Anim Conserv 11:128–137

    Article  Google Scholar 

  • Leitner G, Landsman T, Blum O, Zaltsmann N, Heller ED (1996) Effects of gonadal steroids and their antagonists on the humoral immune response of immune-selected broiler chicks. Poult Sci 75:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities—a common mistake. Auk 104:116–121

    Google Scholar 

  • Lindström KM, Krakower D, Lundström JO, Silverin B (2001) The effects of testosterone on a viral infection in greenfinches (Carduelis chloris): an experimental test of the immunocompetence-handicap hypothesis. Proc R Soc Lond Ser B Biol Sci 268:207–211

    Article  Google Scholar 

  • Lochmiller RL (1995) Testing the immunocompetence handicap theory. Trends Ecol Evol 10:372–373

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rull I, Gil D (2009) Elevated testosterone levels affect female breeding success and yolk androgen deposition in a passerine bird. Behav Processes 82:312–318

    Article  PubMed  Google Scholar 

  • Matson KD, Tieleman BI, Klasing KC (2006) Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol Biochem Zool 79:556–564

    Article  PubMed  Google Scholar 

  • Mazuc J, Bonneaud C, Chastel O, Sorci G (2003) Social environment affects female and egg testosterone levels in the house sparrow (Passer domesticus). Ecol Lett 6:1084–1090

    Article  Google Scholar 

  • McCay PB (1985) Vitamin-E—interactions with free-radicals and ascorbate. Annu Rev Nutr 5:323–340

    Article  PubMed  CAS  Google Scholar 

  • McGraw KJ (2006a) Dietary carotenoids mediate a trade-off between egg quantity and quality in Japanese quail. Ethol Ecol Evol 18:247–256

    Article  Google Scholar 

  • McGraw KJ (2006b) Sex steroid dependence of carotenoid-based coloration in female zebra finches. Physiol Behav 88:347–352

    Article  PubMed  CAS  Google Scholar 

  • McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    Article  PubMed  Google Scholar 

  • McGraw KJ, Ardia DR (2005) Sex differences in carotenoid status and immune performance in zebra finches. Evol Ecol Res 7:251–262

    Google Scholar 

  • McGraw KJ, Ardia DR (2007) Do carotenoids buffer testosterone-induced immunosuppression? An experimental test in a colourful songbird. Biol Lett 3:375–378

    Article  PubMed  Google Scholar 

  • McGraw KJ, Klasing KC (2006) Carotenoids, immunity, and integumentary coloration in red junglefowl (Gallus gallus). Auk 123:1161–1171

    Article  Google Scholar 

  • McGraw KJ, Parker RS (2006) A novel lipoprotein-mediated mechanism controlling sexual attractiveness in a colorful songbird. Physiol Behav 87:103–108

    Article  PubMed  CAS  Google Scholar 

  • McGraw KJ, Adkins-Regan E, Parker RS (2005) Maternally derived carotenoid pigments affect offspring survival, sex ratio, and sexual attractiveness in a colorful songbird. Naturwissenschaften 92:375–380

    Article  PubMed  CAS  Google Scholar 

  • McGraw KJ, Correa SM, Adkins-Regan E (2006a) Testosterone upregulates lipoprotein status to control sexual attractiveness in a colorful songbird. Behav Ecol Sociobiol 60:117–122

    Article  Google Scholar 

  • McGraw KJ, Crino OL, Medina-Jerez W, Nolan PM (2006b) Effect of dietary carotenoid supplementation on food intake and immune function in a songbird with no carotenoid coloration. Ethology 112:1209–1216

    Article  Google Scholar 

  • McGraw KJ, Nolan PM, Crino OL (2011) Carotenoids bolster immunity during moult in a wild songbird with sexually selected plumage coloration. Biol J Linn Soc 102:560–572

    Article  Google Scholar 

  • Mendes L, Piersma T, Hasselquist D, Matson KD, Ricklefs RE (2006) Variation in the innate and acquired arms of the immune system among five shorebird species. J Exp Biol 209:284–291

    Article  PubMed  Google Scholar 

  • Moore IT, Perfito N, Wada H, Sperry TS, Wingfield JC (2002) Latitudinal variation in plasma testosterone levels in birds of the genus Zonotrichia. Gen Comp Endocrinol 129:13–19

    Article  PubMed  CAS  Google Scholar 

  • Navara KJ, Badyaev AV, Mendonca MT, Hill GE (2006a) Yolk antioxidants vary with male attractiveness and female condition in the house finch (Carpodacus mexicanus). Physiol Biochem Zool 79:1098–1105

    Article  PubMed  CAS  Google Scholar 

  • Navara KJ, Siefferman LM, Hill GE, Mendonca MT (2006b) Yolk androgens vary inversely to maternal androgens in eastern bluebirds: an experimental study. Funct Ecol 20:449–456

    Article  Google Scholar 

  • Newbrey JL, Reed WL (2009) Growth of yellow-headed blackbird Xanthocephalus xanthocephalus nestlings in relation to maternal body condition, egg mass, and yolk carotenoids concentrations. J Avian Biol 40:419–429

    Article  Google Scholar 

  • O’Neal DM, Reichard DG, Pavilis K, Ketterson ED (2008) Experimentally-elevated testosterone, female parental care, and reproductive success in a songbird, the dark-eyed junco (Junco hyemalis). Horm Behav 54:571–578

    Article  PubMed  CAS  Google Scholar 

  • Okuliarova M, Skrobanek P, Zeman M (2007) Effect of increasing yolk testosterone levels on early behaviour in Japanese quail hatchlings. Acta Vet Brno 76:325–331

    Article  CAS  Google Scholar 

  • Ottinger MA, Brinkley HJ (1979) Testosterone and sex related physical characteristics during the maturation of the male Japanese quail (Coturnix-coturnix-japonica). Biol Reprod 20:905–909

    Article  PubMed  CAS  Google Scholar 

  • Owen-Ashley NT, Hasselquist D, Wingfield JC (2004) Androgens and the immunocompetence handicap hypothesis: unraveling direct and indirect pathways of immunosuppression in song sparrows. Am Nat 164:490–505

    Article  PubMed  Google Scholar 

  • Peters A (2000) Testosterone treatment is immunosuppressive in superb fairy-wrens, yet free-living males with high testosterone are more immunocompetent. Proc R Soc Lond Ser B Biol Sci 267:883–889

    Article  CAS  Google Scholar 

  • Peters A (2007) Testosterone and carotenoids: an integrated view of trade-offs between immunity and sexual signalling. Bioessays 29:427–430

    Article  PubMed  CAS  Google Scholar 

  • Pilz KM, Smith HG (2004) Egg yolk androgen levels increase with breeding density in the European Starling, Sturnus vulgaris. Funct Ecol 18:58–66

    Article  Google Scholar 

  • Pilz KM, Smith HG, Sandell MI, Schwabl H (2003) Interfemale variation in egg yolk androgen allocation in the European starling: do high-quality females invest more? Anim Behav 65:841–850

    Article  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Article  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR, Marin RH, Satterlee DG (2009) The effects of testosterone on immune function in quail selected for divergent plasma corticosterone response. J Exp Biol 212:3125–3131

    Article  PubMed  Google Scholar 

  • Robinson JE, Follett BK (1982) Photoperiodism in Japanese quail—the termination of seasonal breeding by photorefractoriness. Proc R Soc Lond Ser B Biol Sci 215:95–116

    Article  CAS  Google Scholar 

  • Ros AFH, Groothuis TGG, Apanius V (1997) The relation among gonadal steroids, immunocompetence, body mass, and behavior in young black-headed gulls (Larus ridibundus). Am Nat 150:201–219

    Article  PubMed  CAS  Google Scholar 

  • Royle NJ, Surai PF, Hartley IR (2001) Maternally derived androgens and antioxidants in bird eggs: complementary but opposing effects? Behav Ecol 12:381–385

    Article  Google Scholar 

  • Rutkowska J, Cichon M, Puerta M, Gil D (2005) Negative effects of elevated testosterone on female fecundity in zebra finches. Horm Behav 47:585–591

    Article  PubMed  CAS  Google Scholar 

  • Rutkowska J, Wilk T, Cichon M (2007) Androgen-dependent maternal effects on offspring fitness in zebra finches. Behav Ecol Sociobiol 61:1211–1217

    Article  Google Scholar 

  • Safran RJ, Pilz KM, McGraw KJ, Correa SM, Schwabl H (2008) Are yolk androgens and carotenoids in barn swallow eggs related to parental quality? Behav Ecol Sociobiol 62:427–438

    Article  Google Scholar 

  • Safran RJ, McGraw KJ, Pilz KM, Correa SM (2010) Egg-yolk androgen and carotenoid deposition as a function of maternal social environment in barn swallows Hirundo rustica. J Avian Biol 41:470–478

    Article  Google Scholar 

  • Saino N, Møller AP, Bolzern AM (1995) Testosterone effects on the immune system and parasite infestations in the barn swallow (Hirundo rustica): an experimental test of the immunocompetence hypothesis. Behav Ecol 6:397–404

    Article  Google Scholar 

  • Saino N, Ferrari R, Romano M, Martinelli R, Møller AP (2003) Experimental manipulation of egg carotenoids affects immunity of barn swallow nestlings. Proc R Soc Lond Ser B Biol Sci 270:2485–2489

    Article  Google Scholar 

  • SAS Institute (2006) JMP. Version 5.0.1.2. SAS Institute, Cary, North Carolina

  • Schoech SJ, Ketterson ED, Nolan V (1999) Exogenous testosterone and the adrenocortical response in dark-eyed juncos. Auk 116:64–72

    Google Scholar 

  • Schwabl H (1993) Yolk is a source of maternal testosterone for developing birds. Proc Natl Acad Sci USA 90:11446–11450

    Article  PubMed  CAS  Google Scholar 

  • Schwabl H (1996) Environment modifies the testosterone levels of a female bird and its eggs. J Exp Zool 276:157–163

    Article  PubMed  CAS  Google Scholar 

  • Schwabl H (1997) The contents of maternal testosterone in house sparrow Passer domesticus eggs vary with breeding conditions. Naturwissenschaften 84:406–408

    Article  PubMed  CAS  Google Scholar 

  • Sepp T, Karu U, Sild E, Manniste M, Hõrak P (2011) Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches. Exp Parasitol 127:651–657

    Article  PubMed  CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, Raouf SA, Brown MB, Wingfield JC, Brown CR (2005) Testosterone and group size in cliff swallows: testing the “challenge hypothesis” in a colonial bird. Horm Behav 47:76–82

    Article  PubMed  CAS  Google Scholar 

  • Smits JE, Williams TD (1999) Validation of immunotoxicology techniques in passerine chicks exposed to oil sands tailings water. Ecotoxicol Environ Saf 44:105–112

    Article  PubMed  CAS  Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

    Article  Google Scholar 

  • Soma KK, Wingfield JC (2001) Dehydroepiandrosterone in songbird plasma: seasonal regulation and relationship to territorial aggression. Gen Comp Endocrinol 123:144–155

    Article  PubMed  CAS  Google Scholar 

  • Staub NL, DeBeer M (1997) The role of androgens in female vertebrates. Gen Comp Endocrinol 108:1–24

    Article  PubMed  CAS  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Strasser R, Schwabl H (2004) Yolk testosterone organizes behavior and male plumage coloration in house sparrows (Passer domesticus). Behav Ecol Sociobiol 56:491–497

    Article  Google Scholar 

  • Surai PF, Speake BK (1998) Distribution of carotenoids from the yolk to the tissues of the chick embryo. J Nutr Biochem 9:645–651

    Article  CAS  Google Scholar 

  • Surai PF, Noble RC, Speake BK (1999a) Relationship between vitamin E content and susceptibility to lipid peroxidation in tissues of the newly hatched chick. Br Poult Sci 40:406–410

    Article  PubMed  CAS  Google Scholar 

  • Surai PF, Speake BK, Noble RC, Sparks NHC (1999b) Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick. Biol Trace Elem Res 68:63–78

    Article  PubMed  CAS  Google Scholar 

  • Surai PF, Speake BK, Decrock F, Groscolas R (2001a) Transfer of vitamins E and A from yolk to embryo during development of the king penguin (Aptenodytes patagonicus). Physiol Biochem Zool 74:928–936

    Article  PubMed  CAS  Google Scholar 

  • Surai PF, Speake BK, Sparks NHC (2001b) Carotenoids in avian nutrition and embryonic development. 2. Antioxidant properties and discrimination in embryonic tissues. J Poult Sci 38:117–145

    Article  CAS  Google Scholar 

  • Surai PF, Speake BK, Wood NAR, Blount JD, Bortolotti GR, Sparks NHC (2001c) Carotenoid discrimination by the avian embryo: a lesson from wild birds. Comp Biochem Physiol B Biochem Mol Biol 128:743–750

    Article  PubMed  CAS  Google Scholar 

  • Tanvez A, Amy M, Chastel O, Leboucher G (2009) Maternal effects and beta-carotene assimilation in canary chicks. Physiol Behav 96:389–393

    Article  PubMed  CAS  Google Scholar 

  • Tobler M, Hasselquist D, Smith HG, Sandell MI (2010) Short- and long-term consequences of prenatal testosterone for immune function: an experimental study in the zebra finch. Behav Ecol Sociobiol 64:717–727

    Article  Google Scholar 

  • Tschirren B, Saladin V, Fitze PS, Schwabl H, Richner H (2005) Maternal yolk testosterone does not modulate parasite susceptibility or immune function in great tit nestlings. J Anim Ecol 74:675–682

    Article  Google Scholar 

  • Verboven N, Evans NP, D’Alba L, Nager RG, Blount JD, Surai PF, Monaghan P (2005) Intra-specific interactions influence egg composition in the lesser black-backed gull (Larus fuscus). Behav Ecol Sociobiol 57:357–365

    Article  Google Scholar 

  • Wayland M, Gilchrist HG, Marchant T, Keating J, Smits JE (2002) Immune function, stress response, and body condition in arctic-breeding common eiders in relation to cadmium, mercury, and selenium concentrations. Environ Res 90:47–60

    Article  PubMed  CAS  Google Scholar 

  • Whittingham LA, Schwabl H (2002) Maternal testosterone in tree swallow eggs varies with female aggression. Anim Behav 63:63–67

    Article  Google Scholar 

  • Wingfield JC, Farner DS (1979) Some endocrine correlates of renesting after loss of clutch or brood in the white-crowned sparrow, Zonotrichia-leucophrys-gambelii. Gen Comp Endocrinol 38:322–331

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Matt KS, Farner DS (1984) Physiologic properties of steroid hormone-binding proteins in avian blood. Gen Comp Endocrinol 53:281–292

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AM, Ball GF (1990) The challenge hypothesis—theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846

    Article  Google Scholar 

  • Wooley RE, Nolan LK, Brown J, Gibbs PS, Giddings CW, Turner KS (1993) Association of K-1 capsule, smooth lipopolysaccharides, traT gene, and colicin V production with complement resistance and virulence of avian Escherichia coli. Avian Dis 37:1092–1096

    Google Scholar 

  • Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    Article  PubMed  CAS  Google Scholar 

  • Zuk M, Johnsen TS (1998) Seasonal changes in the relationship between ornamentation and immune response in red jungle fowl. Proc R Soc Lond Ser B Biol Sci 265:1631–1635

    Article  Google Scholar 

  • Zuk M, Johnsen TS, Maclarty T (1995) Endocrine–immune interactions, ornaments and mate choice in red jungle fowl. Proc R Soc Lond Ser B Biol Sci 260:205–210

    Article  Google Scholar 

  • Zysling DA, GreiveS TJ, Breuner CW, Casto JM, Dernas GE, Ketterson ED (2006) Behavioral and physiological responses to experimentally elevated testosterone in female dark-eyed juncos (Junco hyemalis carolinensis). Horm Behav 50:200–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All procedures were conducted under the guidelines for ethical animal care and use approved by the NDSU IACUC. We thank S. Weissenfluh and M. Gastecki for valuable comments on the manuscript; J. Froehlich, S. Weissenfluh, M. Doucette, V. Nagel and a number of volunteers for assistance with animal care and laboratory procedures; E. Davenport and W. Clark for help running the immune assays; and DSM Nutritional Products Ltd. for donating carotenoid beadlets. We also thank Julio Di Rienzo for invaluable help with statistical analysis, and three anonymous reviewers for improving the manuscript. S.I.P. was supported by a postdoctoral fellowship from the Department of Biological Sciences, North Dakota State University. This work was funded by North Dakota State University AES/CSM collaborative grant program to W.L.R. and P.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana I. Peluc.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peluc, S.I., Reed, W.L., McGraw, K.J. et al. Carotenoid supplementation and GnRH challenges influence female endocrine physiology, immune function, and egg-yolk characteristics in Japanese quail (Coturnix japonica). J Comp Physiol B 182, 687–702 (2012). https://doi.org/10.1007/s00360-011-0638-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0638-3

Keywords

Navigation