Skip to main content
Log in

Electrogenic Cl secretion does not occur in the ileum of the Australian common brushtail possum, Trichosurus vulpecula, due to low levels of expression of the NaK2Cl cotransporter, NKCC1

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The colon of the brushtail possum does not have an electrogenic secretory response. Given the functional significance of electrogenic Cl secretion in the intestine of eutherian mammals, we have investigated the secretory response in the small intestine of this marsupial. In the Ussing chamber cAMP-dependent secretagogues stimulated a sustained increase in ileal short-circuit current (Isc), whereas Ca2+-dependent secretagogues induced a transient increase. Both the responses were inhibited by mucosal addition of the anion channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (100 μmol l−1), consistent with an anion secretory response. However, the responses were not inhibited by serosal bumetanide (10 μmol l−1) and were independent of bath Cl, indicating that the stimulated ileal Isc does not involve electrogenic Cl secretion driven by the NaK2Cl cotransporter, NKCC1. Consistent with this, there were low levels of NKCC1 expression in the ileal epithelium. In particular, NKCC1 expression in the ileal crypt cells was comparable to that of the villous cells. This differs from eutherian mammals where high levels of NKCC1 expression in the ileal crypt cells are associated with their role in Cl secretion. The cAMP- and Ca2+-dependent secretory responses were inhibited by the removal of HCO3 suggesting that these responses were due to electrogenic HCO3 secretion. We conclude that the ileum of the possum does not secrete Cl due to low levels of NKCC1 expression. It does however appear to secrete HCO3 . These results are further significant examples of differences in the transport function of the possum intestinal epithelium compared with eutherian mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Butt AG, Mathieson SE, McLeod BJ (2002a) Aldosterone does not regulate amiloride-sensitive Na+ transport in the colon of the Australian common brushtail possum, Trichosurus vulpecula. J Comp Physiol [B] 172:519–527

    CAS  Google Scholar 

  • Butt AG, Mathieson SE, McLeod BJ (2002b) Electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula: indications of novel transport patterns in a marsupial. J Comp Physiol [B] 172:495–502

    CAS  Google Scholar 

  • Cabantchik ZI, Greger R (1992) Chemical probes for anion transporters of mammalian cell membranes. Am J Physiol 262:C803–C827

    PubMed  CAS  Google Scholar 

  • Cook D, Van Lennep E, Roberts M, Young J (1994) Secretion by the major salivary glands. In: Johnson L (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1061–1117

    Google Scholar 

  • Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA, Bridges RJ (1999) Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol 113:743–760

    Article  PubMed  CAS  Google Scholar 

  • Doucet L, Mendes F, Montier T, Delepine P, Penque D, Ferec C, Amaral MD (2003) Applicability of different antibodies for the immunohistochemical localization of CFTR in respiratory and intestinal tissues of human and murine origin. J Histochem Cytochem 51:1191–1199

    PubMed  CAS  Google Scholar 

  • Eckery DC, Whale LJ, Lawrence SB, Wylde KA, McNatty KP, Juengel JL (2002) Expression of mRNA encoding growth differentiation factor 9 and bone morphogenetic protein 15 during follicular formation and growth in a marsupial, the brushtail possum (Trichosurus vulpecula). Mol Cell Endocrinol 192:115–126

    Article  PubMed  CAS  Google Scholar 

  • Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111:931–943

    PubMed  CAS  Google Scholar 

  • Flemmer AW, Gimenez I, Dowd BFX, Darman RB, Forbush B (2002) Activation of the Na–K–Cl cotransporter NKCC1 detected with a phospho-specific antibody. J Biol Chem 277:37551–37558

    Article  PubMed  CAS  Google Scholar 

  • Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85:423–493

    Article  PubMed  CAS  Google Scholar 

  • Geibel JP (2005) Secretion and absorption by colonic crypts. Annu Rev Physiol 67:471–490

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E (1984a) Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish. (Squalus acanthias). II. Effect of inhibitors. Pflugers Arch 402:364–375

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E (1984b) Mechanism of NaCl secretion in the rectal gland of the spiny dogfish (Squalus acanthias). 1. Experiments in isolated perfused rectal gland tubules. Pflugers Arch 402:63–75

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E, Wang E, Forrest JNJ (1984) Mechanism of sodium chloride secretion in rectal tubules of spiny dogfish (Squalus acanthias). III. Effects of stimulation of secretion by cyclic AMP. Pflugers Arch 402:376–384

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E, Gogelein H (1986) Sodium chloride secretion in the rectal gland of dogfish, Squalus acanthias. New Physiol Sci 1:134–136

    CAS  Google Scholar 

  • Grosell M, Genz J (2006) Ouabain-sensitive bicarbonate secretion and acid absorption by the marine teleost fish intestine play a role in osmoregulation. Am J Physiol 291:R1145–R1156

    CAS  Google Scholar 

  • Grosell M, Taylor JR (2007) Intestinal anion exchange in teleost water balance. Comp Biochem Physiol A Mol Integr Physiol 148:14–22

    Article  PubMed  CAS  Google Scholar 

  • Grubb BR (1995) Ion transport across the jejunum in normal and cystic fibrosis mice. Am J Physiol 268:G505–G513

    PubMed  CAS  Google Scholar 

  • Grubb BR, Gabriel SE (1997) Intestinal physiology and pathology in gene-targeted mouse models of cystic fibrosis. Am J Physiol 273:G258–G266

    PubMed  CAS  Google Scholar 

  • Grubb BR, Lee E, Pace AJ, Koller BH, Boucher RC (2000) Intestinal ion transport in NKCC1-deficient mice. Am J Physiol 279:G707–G718

    CAS  Google Scholar 

  • Haas M, Forbush B (2000) The Na–K–Cl cotransporter of secretory epithelia. Annu Rev Physiol 62:515–534

    Article  PubMed  CAS  Google Scholar 

  • Halm DR, Frizzell RA (1990) Intestinal chloride secretion. In: Lebenthal E, Duffey ME (eds) Textbook of secretory diarrhea. Raven Press, New York, pp 47–58

    Google Scholar 

  • Halm DR, Halm ST (2001) Prostanoids stimulate K+ secretion and Cl secretion in guinea pig distal colon via distinct pathways. Am J Physiol 281:G984–G996

    CAS  Google Scholar 

  • Hayden UL, Carey HV (1996) Cellular localization of cystic fibrosis transmembrane regulator protein in piglet and mouse intestine. Cell Tissue Res 283:209–213

    Article  PubMed  CAS  Google Scholar 

  • Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68

    Article  PubMed  CAS  Google Scholar 

  • Hubel KA (1967) Bicarbonate secretion in rat ileum and its dependence on intraluminal chloride. Am J Physiol 213:1409–1413

    PubMed  CAS  Google Scholar 

  • Janssen PWM, Lentle RG, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y (2007) Characterization of flow and mixing regimes within the ileum of the brushtail possum using residence time distribution analysis with simultaneous spatio-temporal mapping. J Physiol (Lond) 582:1239–1248

    Article  CAS  Google Scholar 

  • Kain KC, Orlandi PA, Lanar DE (1991) Universal promoter for gene expression without cloning: expression-PCR. Biotechniques 10:366–374

    PubMed  CAS  Google Scholar 

  • Krouse ME, Talbott JF, Lee MM, Joo NS, Wine JJ (2004) Acid and base secretion in the Calu-3 model of human serous cells. Am J Physiol 287:L1274–L1283

    CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82:245–289

    PubMed  CAS  Google Scholar 

  • Leung AYH, Wong PYD (1994) The epididymis as a chloride-secreting organ. New Physiol Sci 9:31–35

    Google Scholar 

  • Lowy RJ, Dawson DC, Ernst SA (1989) Mechanism of ion transport by avian salt gland primary cell cultures. Am J Physiol 256:R1184–R1191

    PubMed  CAS  Google Scholar 

  • Matthews JB (2002) Molecular regulation of Na+–K+–2Cl cotransporter (NKCC1) and epithelial chloride secretion. World J Surg 26:826–830

    Article  PubMed  Google Scholar 

  • Matthews JB, Hassan I, Meng SF, Archer SY, Hrnjez BJ, Hodin RA (1998) Na–K–2Cl cotransporter gene expression and function during enterocyte differentiation—modulation of Cl secretory capacity by butyrate. J Clin Invest 101:2072–2079

    Article  PubMed  CAS  Google Scholar 

  • Minhas BS, Sullivan SK, Field M (1993) Bicarbonate secretion in rabbit ileum—electrogenicity, ion dependence, and effects of cyclic nucleotides. Gastroenterology 105:1617–1629

    PubMed  CAS  Google Scholar 

  • Nakamura S, Amlal H, Galla JH, Soleimani M (1999) NH4 + secretion in inner medullary collecting duct in potassium deprivation: role of colonic H+–K+–ATPase. Kidney Int 56:2160–2167

    Article  PubMed  CAS  Google Scholar 

  • Palfrey HC, Silva P, Epstein FH (1984) Sensitivity of cAMP-stimulated salt secretion in shark rectal gland to “loop” diuretics. Am J Physiol 246:C242–C246

    PubMed  CAS  Google Scholar 

  • Powell DW, Binder JH, Curran PF (1972) Electrolyte secretion by the guinea pig ileum in vitro. Am J Physiol 223:531–537

    PubMed  CAS  Google Scholar 

  • Rechkemmer G, Frizzell RA, Halm DR (1996) Active potassium transport across guinea-pig distal colon: action of secretagogues. J Physiol (Lond) 493:485–502

    CAS  Google Scholar 

  • Reynolds A, Parris A, Evans LA, Lindqvist S, Sharp P, Lewis M, Tighe R, Williams MR (2007) Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol (Lond) 582:507–524

    Article  CAS  Google Scholar 

  • Rhoads JM, Keku EO, Woodard JP, Bangdiwala SI, Lecce JG, Gatzy JT (1992) l-Glutamine with d-glucose stimulates oxidative metabolism and NaCl absorption in piglet jejunum. Am J Physiol 263:G960–G966

    PubMed  CAS  Google Scholar 

  • Russell JM (2000) Sodium–potassium–chloride cotransport. Physiol Rev 80:211–276

    PubMed  CAS  Google Scholar 

  • Schmitt BM, Biemesderfer D, Romero MF, Boulpaep EL, Boron WF (1999) Immunolocalization of the electrogenic Na+–HCO3 cotransporter in mammalian and amphibian kidney. Am J Physiol 276:F27–F38

    PubMed  CAS  Google Scholar 

  • Schultz SG, Zalusky R (1964) Ion transport in rabbit ileum. I. Short circuit current and Na+ fluxes. J Gen Physiol 47:567–584

    Article  PubMed  CAS  Google Scholar 

  • Seidler U, Blumenstein I, Kretz A, ViellardBaron D, Rossmann H, Colledge WH, Evans M, Ratcliff R, Gregor M (1997) A functional CFTR protein is required for mouse intestinal cAMP-, cGMP- and Ca2+-dependent HCO3 secretion. J Physiol (Lond) 505:411–423

    Article  CAS  Google Scholar 

  • Seidler U, Rossmann H, Jacob P, Bachmann O, Christiani S, Lamprecht G, Gregor M (2000) Expression and function of Na+HCO3 cotransporters in the gastrointestinal tract. In: Schulzke J-D, Fromm M (eds) Epithelial transport and barrier function. Blackwell, Boston, pp 1–14

    Google Scholar 

  • Seidler U, Bachmann O, Jacob P, Christiani S, Blumenstein I, Rossmann H (2001) Na+/HCO3 cotransport in normal and cystic fibrosis intestine. J Pancreas 2:247–256

    CAS  Google Scholar 

  • Sellin JH, Desoignie R (1989) Regulation of bicarbonate transport in rabbit ileum: pH stat studies. Am J Physiol 257:G607–G615

    PubMed  CAS  Google Scholar 

  • Smith PL, Frizzell RA (1984) Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K+ permeability parallels secretion rate. J Membr Biol 77:187–199

    Article  PubMed  CAS  Google Scholar 

  • Smith PL, Welsh MJ, Stoff JS, Frizzell RA (1982) Chloride secretion by canine tracheal epithelium: I. Role of intracellular cAMP levels. J Membr Biol 70:217–226

    Article  PubMed  CAS  Google Scholar 

  • Specian RD, Oliver MG (1991) Functional biology of intestinal goblet cells. Am J Physiol 260:C183–C193

    PubMed  CAS  Google Scholar 

  • Spiegel S, Phillipper M, Rossmann H, Riederer B, Gregor M, Seidler U (2003) Independence of apical Cl/HCO3 exchange and anion conductance in duodenal HCO3 secretion. Am J Physiol 285:G887–G897

    CAS  Google Scholar 

  • Strong TV, Boehm K, Collins FS (1994) Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest 93:347–354

    Article  PubMed  CAS  Google Scholar 

  • Sullivan SK, Field M (1991) Ion transport across mammalian small intestine. In: Field M, Frizzell RA (eds) Handbook of physiology, Section 6, The gastrointestinal system, intestinal absorption and secretion. American Physiological Society, New York, pp 287–301

    Google Scholar 

  • Taylor JR, Grosell M (2006) Evolutionary aspects of intestinal bicarbonate secretion in fish. Comp Biochem Physiol A Mol Integr Physiol 143:523–529

    Article  PubMed  CAS  Google Scholar 

  • Tisdall DJ, Hudson N, Smith P, McNatty KP (1994) Localization of ovine follistatin and alpha and beta A inhibin mRNA in the sheep ovary during the oestrous cycle. J Mol Endocrinol 12:181–193

    Article  PubMed  CAS  Google Scholar 

  • Trezise AE, Buchwald M (1991) In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature 353:434–437

    Article  PubMed  CAS  Google Scholar 

  • Trezise AEO, Romano PR, Gill DR, Hyde SC, Sepulveda FV, Buchwald M, Higgins CF (1992) The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. EMBO J 11:4291–4303

    PubMed  CAS  Google Scholar 

  • Turnberg DA, Biederdorf RA, Morawski SG, Fordtran JS (1970) Interrelationships of chloride bicarbonate, sodium and hydrogen transport in human ileum. J Clin Invest 49:357–367

    Google Scholar 

  • Walker NM, Flagella M, Gawenis LR, Shull GE, Clarke LL (2002) An alternate pathway of cAMP-stimulated Cl secretion across the NKCC1-null murine duodenum. Gastroenterology 123:531–541

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ (1987) Electrolyte transport by airway epithelia. Physiol Rev 67:1143–1184

    PubMed  CAS  Google Scholar 

  • Welsh MJ, Smith PL, Frizzell RA (1982) Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile. J Membr Biol 70:227–238

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Smith PL, Frizzell RA (1983) Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces. J Membr Biol 71:209–218

    Article  PubMed  CAS  Google Scholar 

  • Woodburne MO, Rich TH, Springer MS (2003) The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol 28:360–385

    Article  PubMed  CAS  Google Scholar 

  • Worrell RT, Merk L, Matthews JB (2008) Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1. Am J Physiol 294:G429–G440

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Sonya Mathieson for excellent technical assistance and Euan Thompson for the collection and maintenance of the possums. This work was supported by a University of Otago Research Grant, and grants from the Foundation for Research Science and Technology, the Animal Health Board Inc., and the National Centre for Possum Biocontrol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Grant Butt.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolo, R.C., Harfoot, N., Gill, M. et al. Electrogenic Cl secretion does not occur in the ileum of the Australian common brushtail possum, Trichosurus vulpecula, due to low levels of expression of the NaK2Cl cotransporter, NKCC1. J Comp Physiol B 179, 997–1010 (2009). https://doi.org/10.1007/s00360-009-0379-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0379-8

Keywords

Navigation