Skip to main content
Log in

Melatonin attenuates the acetylcholine-induced contraction in isolated intestine of a teleost fish

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The present study investigates the possible direct actions of melatonin (N-acetyl-5-methoxytryptamine) on intestinal motility in goldfish (Carassius auratus) using an in vitro system of isolated intestine in an organ bath engaged to an isometric transducer. The longitudinal strips from goldfish intestine in the organ bath showed a resting spontaneous myogenic rhythmic activity which is not altered by melatonin. The addition of acetylcholine (1 nmol l−1–10 mmol l−1) to the organ bath induces a significant contraction of the intestinal strips in a concentration-dependent manner. The addition of melatonin and its agonist, 2-iodomelatonin, induced a concentration-dependent attenuation of acetylcholine-induced contractile response. The specificity of this effect is tested by the preincubation of the intestine strips in the presence of two melatoninergic antagonists, luzindole (a non-selective MT1/MT2 melatonin receptor antagonist) and 4-P-PDOT (preferred antagonist of MT2 receptor subtype), which counteracted the melatonin-induced relaxation in a concentration-dependent manner. Finally, present results demonstrate that this melatoninergic effect on intestinal strips is a process highly dependent on extracellular calcium. In conclusion, this is the first study demonstrating the role of melatonin in the control of gut motility in a non-mammalian vertebrate. The melatonin effects on isolated intestine from goldfish are mediated by melatoninergic membrane receptors, and could suggest a delay in food transit time, supporting its anorectic effect reported on in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aronsson U, Holmgren S (2000) Muscarinic M3-like receptors, cyclic AMP and L-type calcium channels are involved in the contractile response to cholinergic agents in gut smooth muscle of the rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 23:353–361

    Article  CAS  Google Scholar 

  • Barajas-López C, Peres AL, Espinosa-Luna R, Reyes-Vázquez C, Prieto-Gómez B (1996) Melatonin modulates cholinergic transmission by blocking nicotinic channels in the guinea-pig submucous plexus. Eur J Pharmacol 312:319–325

    Article  PubMed  Google Scholar 

  • Bayarri MJ, Iigo M, Muñoz-Cueto JA, Isorna E, Delgado MJ, Madrid JA, Sánchez-Vázquez FJ, Alonso-Gómez AL (2004) Binding characteristics and daily rhythms of melatonin receptors are distinct in the retina and brain areas of the European sea bass (Dicentrarchus labrax). Brain Res 1029:241–250

    Article  PubMed  CAS  Google Scholar 

  • Bubenik GA (1986) The effect of serotonin, N-acetylserotonin and melatonin on spontaneous contractions of isolated rat intestine. J Pineal Res 3:41–54

    Article  PubMed  CAS  Google Scholar 

  • Bubenik GA (2002) Gastrointestinal melatonin: localization, function and clinical relevance. Dig Dis Sci 47:2336–2348

    Article  PubMed  CAS  Google Scholar 

  • Bubenik GA, Dhanvantari S (1989) Influence of serotonin and melatonin on some parameters of gastrointestinal activity. J Pineal Res 7:333–344

    Article  PubMed  CAS  Google Scholar 

  • Bubenik GA, Pang SF (1997) Melatonin levels in the gastrointestinal tissues of fish, amphibians, and a reptile. Gen Comp Endocrinol 106:415–419

    Article  PubMed  CAS  Google Scholar 

  • De Pedro N, Björnsson T (2001) Regulation of food intake by neuropeptides and hormones. In: Houlihan D, Boujard T, Jobling M (eds) Food intake in fish. Blackwell Science, Oxford, pp 267–296

    Google Scholar 

  • De Pedro N, Martínez-Álvarez R, Delgado MJ (2008) Melatonin reduces body weight in goldfish (Carassius auratus): effects on metabolic resources and some feeding regulators. J Pineal Res 45:32–39

    Article  PubMed  CAS  Google Scholar 

  • Doolen S, Krause DN, Dubocovich ML, Duckles SP (1998) Melatonin mediates two distinct responses in vascular smooth muscle. Eur J Pharmacol 345:67–69

    Article  PubMed  CAS  Google Scholar 

  • Drago P, Macauda S, Salehi S (2002) Small doses of melatonin increase intestinal motility in rats. Dig Dis Sci 47:1969–1974

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 receptors in mammals. Endocrine 27:101–110

    Article  PubMed  CAS  Google Scholar 

  • Falcón J (1999) Cellular circadian clocks in the pineal. Prog Neurobiol 58:121–162

    Article  PubMed  Google Scholar 

  • Falcón J, Besseau L, Sauzet S, Boeuf G (2007) Melatonin effects on the hypothalamo-pituitary axis in fish. Trends Endocrinol Metab 18:81–88

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Durán B, Ruibal C, Polakof S, Ceinos RM, Soengas JL, Míguez JM (2007) Evidence for arylalkylamine N-acetyltransferase (AANAT2) expression in rainbow trout peripheral tissue with emphasis in the gastrointestinal tract. Gen comp Endocrinol 152:289–294

    Article  PubMed  CAS  Google Scholar 

  • Hasler WL (2006) Small intestinal motility. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Academic Press, London, pp 935–964

    Chapter  Google Scholar 

  • Herrero MJ, Martínez FJ, Míguez JM, Madrid JA (2007) Response of plasma and gastrointestinal melatonin, plasma cortisol and activity rhythms of European sea bass (Dicentrarchus labrax) to dietary supplementation with tryptophan and melatonin. J Comp Physiol B 177:319–326

    Article  PubMed  CAS  Google Scholar 

  • Iigo M, Aida K (1995) Effects of season, temperature, and photoperiod on plasma melatonin rhythm in the goldfish Carassius auratus. J Pineal Res 18:62–68

    Article  PubMed  CAS  Google Scholar 

  • Iigo M, Furukawa K, Tabata M, Aida K (2003) Circadian variations of melatonin binding sites in the goldfish brain. Neurosci Lett 347:49–52

    Article  PubMed  CAS  Google Scholar 

  • Johansson A, Holmgren S (2003) Ca2+-recruitment in tachykinin-induced contractions of gut smooth muscle from African clawed frog, Xenopus laevis and rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 113:185–191

    Article  CAS  Google Scholar 

  • Kezuka H, Iigo M, Furukawa K (1992) Effects of photoperiod, pinealectomy and ophthalmectomy on circulating melatonin rhythms in the goldfish, Carassius auratus. Zool Sci 9:1047–1053

    CAS  Google Scholar 

  • Konturek SJ, Konturek PC, Brzozowska I, Pawlik M, Sliwowski Z, Cześnikiewicz-Guzik M, Kwiecień S, Brzozowski T, Bubenik GA, Pawlik WW (2007) Localization and biological activities of melatonin in intact and diseased gastrointestinal tract. J Physiol Pharmacol 58:381–405

    PubMed  CAS  Google Scholar 

  • Kulczykowska E, Kalamarz H, Wame JM, Balment RJ (2006) Day-night specific binding of 2-[125I]Iodomelatonin and melatonin content in gill, small intestine and kidney of three fish species. J Comp Physiol B 176:277–285

    Article  PubMed  CAS  Google Scholar 

  • Lecci A, Santicioli P, Maggi CA (2002) Pharmacology of transmission to gastrointestinal muscle. Curr Opin Pharmacol 2:630–641

    Article  PubMed  CAS  Google Scholar 

  • Lee PPN, Pang SF (1993) Melatonin and its receptors in the gastrointestinal tract. Biol Signals 12:181–193

    Article  Google Scholar 

  • Lepage O, Larson ET, Mayer I, Winberg S (2005) Tryptophan affects both gastrointestinal melatonin production and interrenal activity in stressed and nonstressed rainbow trout. J Pineal Res 38:264–271

    Article  PubMed  CAS  Google Scholar 

  • López-Olmeda JF, Madrid JA, Sánchez-Vázquez FJ (2006) Melatonin effects on food intake and activity rhythms in two fish species with different activity patterns: Diurnal (goldfish) and nocturnal (tench). Comp Biochem Physiol A 144:180–187

    Google Scholar 

  • López-Patiño MA, Guijarro AI, Isorna E, Delgado MJ, Alonso-Gómez AL (2007) Regulación por la temperatura de la ritmicidad de los receptores de melatonina en la tenca (Tinca tinca, L.). In: Canário AVM, Power DM (eds) Avanços em Endocrinologia Comparativa, vol III. CCMAR, Universidade do Algarve, pp 149–153

  • López-Patiño MA, Alonso-Gómez AL, Guijarro AI, Isorna E, Delgado MJ (2008) Melatonin receptors in brain areas and ocular tissues of the teleost Tinca tinca. Characterization and effect of temperature. Gen Comp Endocrinol 155:847–856

    Article  PubMed  CAS  Google Scholar 

  • Mandl P, Kiss JP (2007) Role of presynaptic nicotinic acetylcholine receptors in the regulation of gastrointestinal motility. Brain Res Bull 72:194–200

    Article  PubMed  CAS  Google Scholar 

  • Manera M, Giammarino A, Perugini M, Amorena M (2008) In vitro evaluation of gut contractile response to histamine in rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Res Vet Sci 84:126–131

    Article  PubMed  CAS  Google Scholar 

  • Merle A, Delagrange P, Renard P, Lesieur D, Cuber JC, Roche M, Pellissier S (2000) Effect of melatonin on motility patterns of small intestine in rats and its inhibition by melatonin receptor antagonist S 22153. J Pineal Res 29:116–124

    Article  PubMed  CAS  Google Scholar 

  • Monroe KK, Watts SW (1998) The vascular reactivity of melatonin. Gen Pharmacol 30:31–35

    PubMed  CAS  Google Scholar 

  • Motilva V, Cabeza J, Alarcón de la Lastra C (2001) New issues about melatonin and its effects on the digestive system. Curr Pharm Design 7:909–931

    Article  CAS  Google Scholar 

  • Olsson C, Holmgren S (2001) The control of gut motility. Comp Biochem Physiol A 128:481–503

    CAS  Google Scholar 

  • Park YJ, Park JG, Jeong HB, Takeuchi Y, Kim SJ, Lee YD, Takemura A (2007) Expression of the melatonin receptor Mel1c in neural tissues of the reef fish Siganus guttatus. Comp Biochem Physiol A 147:103–111

    Article  CAS  Google Scholar 

  • Pinillos ML, De Pedro N, Alonso-Gómez AL, Alonso-Bedate M, Delgado MJ (2001) Food intake inhibition by melatonin in goldfish (Carassius auratus). Physiol Behav 72:629–634

    Article  PubMed  CAS  Google Scholar 

  • Pontoire C, Bernard M, Silvain C, Collin JP, Voisin P (1993) Characterization of melatonin binding sites in chicken and human intestines. Eur J Pharmacol 247:11–18

    Article  Google Scholar 

  • Poon AMS, Chow PH, Mak ASY, Pang SF (1997) Autoradiographic localization of 2[125I]iodomelatonin binding sites in the gastrointestinal tract of mammals including humans and birds. J Pineal Res 23:5–14

    Article  PubMed  CAS  Google Scholar 

  • Raikhlin NT, Kvetnoy IM, Tolkachev VN (1975) Melatonin may be synthesized in enterochromaffin cells. Nature 255:344–345

    Article  PubMed  CAS  Google Scholar 

  • Sallinen P, Saarela S, Ilves M, Vakkuri O, Leppaluoto J (2005) The expression of MT1 and MT2 melatonin receptor mRNA in several rat tissues. Life Sci 76:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Satake N, Shibata S, Takagi T (1986) The inhibitory action of melatonin on the contractile response to 5-hydroxytryptamine in various isolated vascular smooth muscles. Gen Pharmacol 17:553–558

    PubMed  CAS  Google Scholar 

  • Volkoff H, Canosa LF, Uniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142:3–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Ministry of Science and Innovation and the European Social Fund (project AGL2007-65744-C03-03) and by the University Complutense of Madrid/Comunidad Autónoma de Madrid (project CCG07-UCM/AGR-2500). E. Velarde and C. Azpeleta are predoctoral fellows from the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jesús Delgado.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velarde, E., Alonso-Gómez, A.L., Azpeleta, C. et al. Melatonin attenuates the acetylcholine-induced contraction in isolated intestine of a teleost fish. J Comp Physiol B 179, 951–959 (2009). https://doi.org/10.1007/s00360-009-0373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0373-1

Keywords

Navigation