Skip to main content
Log in

Circulatory function at sub-zero temperature: venous responses to catecholamines and angiotensin II in the Antarctic fish Pagothenia borchgrevinki

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Catecholamines increase arterial pressure by increasing cardiac output (Q) and stroke volume (V s), while angiotensin II (ang II) also increases vascular resistance (R sys) in the Antarctic fish Pagothenia borchgrevinki. Adrenaline, phenylephrine and ang II (Asn1, Val5) were injected into P. borchgrevinki. Cardiovascular variables, including central venous pressure (P cv) and mean circulatory filling pressure (P mcf; an index of venous capacitance), were recorded to investigate if venous vasoconstriction can explain the increased V s and Q and the arterial pressor response in this species. Routine P cv and P mcf were 0.11 ± 0.01 and 0.18 ± 0.02 kPa, respectively. All of the drugs caused moderate increases in P cv and P mcf and the responses were attenuated after α-adrenergic blockade with prazosin. Although dorsal aortic pressure (P da) also increased in response to all agonists, the mechanisms differed. Adrenaline caused sustained increases in V s and Q, while R sys only rose transiently. Ang II had a slower effect than adrenaline and increased both R sys and Q, while phenylephrine only increased R sys. This study demonstrates that P cv is positive and controlled by an α-adrenergic mechanism in P. borchgrevinki. However, given the relatively small venous response to adrenaline it seems more likely that the increases in V s and Q from this agonist are due to direct effects on the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agnisola C, Acierno R, Calvo J, Farina F, Tota B (1997) In vitro cardiac performance in the sub-antarctic notothenioids Eleginops maclovinus (Subfamily Eleginopinae), Paranothothenia magellanica, and Patagonotothen Tessellata (Subfamily Nototheniinae). Comp Biochem Physiol A 118:1437–1445

    Article  Google Scholar 

  • Axelsson M, Agnisola C, Nilsson S, Tota B (1996) Fish cardio-circulatory function in the cold. In: Pörtner HO, Playle RC (eds) Cold ocean physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Axelsson M (2005) The circulatory system and its control. In: Farrell AP, Steffensen JF (eds) The physiology of polar fishes, vol 22. Academic Press, Dublin, pp 239–280

    Google Scholar 

  • Axelsson M, Davison B, Forster M, Nilsson S (1994) Blood pressure control in the Antarctic fish Pagothenia borchgrevinki. J Exp Biol 190:265–279

    PubMed  Google Scholar 

  • Axelsson M, Davison W, Forster ME, Farrell AP (1992) Cardiovascular responses of the red-blooded Antarctic fishes Pagothenia bernacchii and P. borchgrevinki. J Exp Biol 167:179–201

    PubMed  CAS  Google Scholar 

  • Axelsson M, Thorarensen H, Nilsson S, Farrell AP (2000) Gastrointestinal blood flow in the red Irish lord, Hemilepidotus hemilepidotus: long-term effects of feeding and adrenergic control. J Comp Physiol 170:145–152

    CAS  Google Scholar 

  • Bernier NJ, McKendry JE, Perry SF (1999) Blood pressure regulation during hypotension in two teleost species: Differential involvement of the renin-angiotensin and adrenergic systems. J Exp Biol 202:1677–1690

    PubMed  CAS  Google Scholar 

  • Bernier NJ, Perry SF (1999) Cardiovascular effects of angiotensin-II- mediated adrenaline release in rainbow trout Oncorhynchus mykiss. J Exp Biol 202:55–66

    PubMed  CAS  Google Scholar 

  • Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–220

    Article  Google Scholar 

  • Davison W, Axelsson M, Forster M, Nilsson S (1995) Cardiovascular responses to acute handling stress in the Antarctic fish Trematomus bernacchii are not mediated by circulatory catecholamines. Fish Physiol Biochem 14:253–257

    Article  CAS  Google Scholar 

  • Davison W, Axelsson M, Nilsson S, Forster ME (1997) Cardiovascular control in antarctic notothenioid fishes. Comp Biochem Physiol A 118:1001–1008

    Article  Google Scholar 

  • Davison W, Franklin CE (2003) Hypertension in Pagothenia borchgrevinki caused by X-cell disease. J Fish Biol 63:129–136

    Article  Google Scholar 

  • De Vries AL, Steffensen JF (2005) The Arctic and Antarctic polar marine environments. In: Farrell AP, Steffensen JF (eds) The physiology of polar fishes, vol 22. Academic Press, pp 1–24

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Article  Google Scholar 

  • Egginton S (1994) Stress response in two Antarctic teleosts (Notothenia coriiceps Richardson and Chaenocephalus aceratus Lonnberg) following capture and surgery. J Comp Physiol B 164(6):482–491

    Article  Google Scholar 

  • Egginton S, Campbell H, Davison W (2006) Cardiovascular control in Antarctic fish. Deep Sea Res Part II Top Stud Oceanogr 53:1115–1130

    Article  Google Scholar 

  • Farrell AP (1991) From hagfish to tuna: a perspective on cardiac function in fish. Physiol Zool 64:1137–1164

    Google Scholar 

  • Farrell AP, Jones DR (1992) The heart. In: Hoar WS, Randal DJ, Farrell AP (eds) Fish physiology, the cardiovascular system, vol XII. Academic Press Inc, MA, pp 1–88

    Chapter  Google Scholar 

  • Forster ME, Davison W, Axelsson M, Sundin L, Franklin CE, Gieseg S (1998) Catecholamine release in heat-stressed Antarctic fish causes proton extrusion by the red cells. J Comp Physiol B 168:345–352

    Article  CAS  Google Scholar 

  • Franklin CE, Davison W (1988) X-cells in the gills of an Antarctic teleost, Pagothenia borchgrevinki. J Fish Biol 32:341–353

    Article  Google Scholar 

  • Hunt BM, Hoefling K, Cheng CHC (2003) Annual warming episodes in seawater temperatures in McMurdo Sound in relationship to endogenous ice in notothenioid fish. Antarct Sci 15:333–338

    Article  Google Scholar 

  • Macdonald JA, Montgomery JC, Wells RMG (1987) Comparative physiology of Antarctic fishes. In: Blaxter JHS, Southward AJ (eds) Advances in marine biology, vol 24. Academic Press, London, pp 321–388

    Google Scholar 

  • Minerick AR, Chang HC, Hoagland TM, Olson KR (2003) Dynamic synchronization analysis of venous pressure-driven cardiac output in rainbow trout. Am J Physiol 285:R889–R896

    CAS  Google Scholar 

  • Olson K, Chavez A, Conklin D, Cousins K, Farrell A, Ferlic R, Keen J, Kne T, Kowalski K, Veldman T (1994) Localization of angiotensin II responses in the trout cardiovascular system. J Exp Biol 194:117–138

    PubMed  CAS  Google Scholar 

  • Olson KR (1992) Blood and extracellular fluid volume regulation: role of the renin angiotensin system, kallikrein-kinin system, and atrial natriuretic peptides. In: Randall DJ, Hoar WS, Farrell AP (eds) Fish physiology, vol XIIB. Academic Press, San Diego, pp 135–254

    Google Scholar 

  • Olson KR, Farrell AP (2006) The cardiovascular system. In: Evans DH, Claiborne JB (eds) The physiology of fishes. Taylor and Francis, London

    Google Scholar 

  • Oudit GY, Butler DG (1995) Angiotensin II and cardiovascular regulation in a freshwater teleost, Anguilla rostrata LeSueur. Am J Physiol 269:R726–R735

    PubMed  CAS  Google Scholar 

  • Pang CC (2001) Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther 90:179–230

    Article  PubMed  CAS  Google Scholar 

  • Rothe CF (1984) Control of capacitance vessels. In: Shepherd AP, Granger DN (eds) Physiology of the intestinal circulation. Raven Press, New York, pp 73–81

    Google Scholar 

  • Sandblom E, Axelsson M (2005) Baroreflex mediated control of heart rate and vascular capacitance in trout. J Exp Biol 208:821–829

    Article  PubMed  CAS  Google Scholar 

  • Sandblom E, Axelsson M (2006) Adrenergic control of venous capacitance during moderate hypoxia in the rainbow trout (Oncorhynchus mykiss): role of neural and circulating catecholamines. Am J Physiol 291:R711–R718

    CAS  Google Scholar 

  • Sandblom E, Axelsson M (2007a) The venous circulation: A piscine perspective. Comp Biochem Physiol A 148:785–801

    Article  Google Scholar 

  • Sandblom E, Axelsson M (2007b) Venous hemodynamic responses to acute temperature increase in the rainbow trout (Oncorhynchus mykiss). Am J Physiol 292:R2292–R2298

    CAS  Google Scholar 

  • Sandblom E, Farrell AP, Altimiras J, Axelsson M, Claireaux G (2005) Cardiac preload and venous return in swimming sea bass (Dicentrarchus labrax L.). J Exp Biol 208:1927–1935

    Article  PubMed  Google Scholar 

  • Sandblom E, Axelsson M, Farrell AP (2006a) Central venous pressure and mean circulatory filling pressure in the dogfish Squalus acanthias: adrenergic control and role of the pericardium. Am J Physiol 291:R1465–R1473

    CAS  Google Scholar 

  • Sandblom E, Axelsson M, McKenzie DJ (2006b) Venous responses during exercise in rainbow trout, Oncorhynchus mykiss: α-adrenergic control and the antihypotensive function of the renin-angiotensin system. Comp Biochem Physiol A 144:401–409

    Article  Google Scholar 

  • Sandblom E, Axelsson M and Davison W (2008) Enforced exercise, but not acute temperature elevation, decreases venous capacitance in the stenothermal Antarctic fish Pagothenia borchgrevinki. J Comp Physiol B, 178(7):845–851

    Article  PubMed  Google Scholar 

  • Skals M, Skovgaard N, Taylor EW, Leite CA, Abe AS, Wang T (2006) Cardiovascular changes under normoxic and hypoxic conditions in the air-breathing teleost Synbranchus marmoratus: importance of the venous system. J Exp Biol 209:4167–4173

    Article  PubMed  Google Scholar 

  • Sundin L, Davison W, Forster M, Axelsson M (1998) A role of 5-HT2 receptors in the gill vasculature of the antarctic fish Pagothenia borchgrevinki. J Exp Biol 201:2129–2138

    PubMed  CAS  Google Scholar 

  • Sundin L, Axelsson M, Davison W, Forster ME (1999) Cardiovascular responses to adenosine in the antarctic fish Pagothenia borchgrevinki. J Exp Biol 202:2259–2267

    PubMed  CAS  Google Scholar 

  • Tota B, Acierno R, Agnisola C (1991) Mechanical performance of the isolated and perfused heart of the hemoglobinless Antarctic icefish Chionodraco hamatus (Lönnberg): effects of loading conditions and temperature. Phil Trans B 332:191–198

    Article  Google Scholar 

  • Uva BM, Masini MA, Devecchi M, Napoli L (1991) Renin-angiotensin system in antarctic fishes. Comp Biochem Physiol 100A:897–900

    Article  CAS  Google Scholar 

  • Whiteley NM, Egginton S (1999) Antarctic fishes have a limited capacity for catecholamine synthesis. J Exp Biol 202:3623–3629

    PubMed  CAS  Google Scholar 

  • Wood CM, Shelton G (1980) Cardiovascular dynamics and adrenergic responses of the rainbow trout in vivo. J Exp Biol 87:247–270

    PubMed  CAS  Google Scholar 

  • Zhang Y, Weaver L Jr, Ibeawuchi A, Olson KR (1998) Catecholaminergic regulation of venous function in the rainbow trout. Am J Physiol 274:R1195–R1202

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Antarctica New Zealand and base staff of Scott Base for logistics support and the ability to visit and work in Antarctica. M. A. was financially supported by research grants from the Swedish research council and E. S. was supported by a travel grant from the Swedish research council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Sandblom.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandblom, E., Axelsson, M. & Davison, W. Circulatory function at sub-zero temperature: venous responses to catecholamines and angiotensin II in the Antarctic fish Pagothenia borchgrevinki . J Comp Physiol B 179, 165–173 (2009). https://doi.org/10.1007/s00360-008-0299-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0299-z

Keywords

Navigation