Skip to main content
Log in

Tyraminergic modulation of agonistic outcomes in crayfish

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Octopamine, a biogenic amine, modulates various behaviors, ranging from locomotion and aggression to learning and memory in invertebrates. Several studies recently demonstrated that tyramine, the biological precursor of octopamine, also affects behaviors independent of octopamine. Here we investigated the involvement of tyramine in agonistic interaction of the male crayfish Procambarus clarkii. When male crayfish fight, larger animals (3–7% difference in body length) are more likely to win. By contrast, direct injection of tyramine or octopamine counteracted the physical advantage of larger animals. Tyramine or octopamine-injected naive large animals were mostly beaten by untreated smaller naive animals. This pharmacological effect was similar to the loser effect in which subordinate larger animals are frequently beaten by smaller animals. Furthermore, loser effects were partly eliminated by either injection of epinastine, an octopamine blocker, or yohimbine, a tyramine blocker, and significantly diminished by injection of a mixture of both blockers. We also observed that tyramine levels in the subesophageal ganglion were remarkably increased in subordinate crayfish after losing a fight. These results suggest that tyramine modulates aggressive levels of crayfish and contributes to the loser effect in parallel with octopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

epina:

Epinastine

NL:

Naive large animal

NS:

Naive small animal

OA:

Octopamine

SL:

Subordinate large animal

TA:

Tyramine

yohim:

Yohimbine

References

  • Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz R (2005) Tyramine function independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247–260

    Article  CAS  PubMed  Google Scholar 

  • Antonsen BL, Paul DH (1997) Serotonin and octopamine elicit stereotypical agonistic behaviors in the squat lobster Munida quadrispina (Anomura, Galatheidae). J Comp Physiol A 181:501–510

    Article  CAS  Google Scholar 

  • Aonuma H, Watanabe T (2012) Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, Formica japonica. PLoS One 7:e43377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balfanz S, Strunker T, Frings S, Baumann A (2005) A family of octopamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 93:440–451

    Article  CAS  PubMed  Google Scholar 

  • Bayliss A, Roselli G, Evans PD (2013) A comparison of signaling properties of two tyramine receptors from Drosophila. J Neurochem 125:37–48

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bloch G, Simon T, Robinson GE, Hefetz A (2000) Brain biogenic amines and reproductive dominance in bumble bee (Bombus terrestris). J Comp Physiol A 186:261–268

    Article  CAS  PubMed  Google Scholar 

  • Braun G, Bicker G (1992) Habituation of an appetitive reflex in the honeybee. J Neurophysiol 67:588–598

    Article  CAS  PubMed  Google Scholar 

  • Brodfuehrer PD, Friesen WO (1986) Initiation of swimming activity by trigger neurons in the leech suboesophageal ganglion I. Output connections of Tr1 and Tr2. J Comp Physiol A 159:489–502

    Article  CAS  PubMed  Google Scholar 

  • Chang ES, Chang SA, Beltz BS, Kravitz EA (1999) Crustacean hyperglycemic hormone in the lobster nervous system: localization and release from cells in the subesophageal ganglion and thoracic second roots. J Comp Neurol 414:50–56

    Article  CAS  PubMed  Google Scholar 

  • Chase I, Bartolomeo C, Dugatkin LA (1994) Aggressive interactions and inter-contest interval: how long do winners keep winning? Anim Behav 48:393–400

    Article  Google Scholar 

  • Cornford A, Kristan WB III, Malnove S, Kristan WB Jr, French KA (2006) Functions of the subesophageal ganglion in the medicinal leech revealed by ablation of neuromeres in embryos. J Exp Biol 209:493–503

    Article  PubMed  Google Scholar 

  • Cuvillier-Hot V, Lenoir A (2006) Biogenic amine levels, reproduction and social dominance in the queenless-ant Streblognathus peetersi. Naturwissenschaften 93:149–153

    Article  CAS  PubMed  Google Scholar 

  • Daws AG, Grills J, Konzen K, Moore PA (2002) Previous experiences alter the outcome of aggressive interactions between males in the crayfish, Procambarus clarkii. Mar Fresh Behav Physiol 35:139–148

    Article  Google Scholar 

  • Drummond H, Canales C (1998) Dominance between booby nestlings involves winner and loser effects. Anim Bahav 55:1669–1676

    Article  CAS  Google Scholar 

  • Falibene A, Rossler W, Josens R (2012) Serotonin depresses feeding behaviour in ants. J Insect Physiol 58:7–17

    Article  CAS  PubMed  Google Scholar 

  • Fussnecker BL, Smith BH, Mustard JA (2006) Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). J Insect Physiol 52:1083–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuxjager MJ, Mast G, Becker EA, Marler CA (2009) The ‘home advantage’ is necessary for a full winner effect and changes in post-encounter testosterone. Horm Behav 56:214–219

    Article  CAS  PubMed  Google Scholar 

  • Fuxjager MJ, Forbes-Lorman RM, Coss DJ, Auger CJ, Auger AP, Marler CA (2010) Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proc Natl Acad Sci USA 107:12393–12398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goessmann C, Hemelrijk C, Huber R (2000) The formation and maintenance of crayfish hierarchies: behavioral and self-structuring properties. Behav Ecol Sociobiol 48:418–428

    Article  Google Scholar 

  • Goubault M, Decuigniere M (2012) previous experience and contest outcome: winner effects persist in absence of evident loser effects in a parasitoid wasp. Am Nat 180:364–371

    Article  PubMed  Google Scholar 

  • Hsu Y, Wolf LL (1999) The winner and loser effect: integrating multiple experiences. Anim Behav 57:903–910

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Delago A (1998) Serotonin alters decisions to withdraw in fighting crayfish. Astacus astacus: the motivational concept revisited. J Comp Physiol A 182:573–583

    Article  Google Scholar 

  • Huber R, Smith K, Delago A, Isaksson K, Kravitz EA (1997) Serotonin and aggressive motivation in crustaceans: altering the decision to retreat. Proc Natl Acad Sci USA 94:5939–5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczer L, Pedetta S, Maldonado H (2007) Aggressiveness and memory: subordinate crabs present higher memory ability than dominants after an agonistic experience. Neurobiol Learn Mem 87:140–148

    Article  PubMed  Google Scholar 

  • Kasumovic MM, Elias DO, Sivalinghem S, Mason AC, Andrade MCB (2010) Examination of prior contest experience and the retention of winner and loser effects. Behav Ecol 21:404–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Khazraie K, Campan M (1999) The role of prior agonistic experience in dominance relationships in male crickets Gryllus bimaculatus (Orthoptera: Gryllidae). Behav Process 44:341–348

    Article  CAS  Google Scholar 

  • Klappenbach M, Maldonado H, Locatelli F, Kaczer L (2012) Opposite actions of dopamine on aversive and appetitive memories in the crab. Learn Mem 19:73–83

    Article  CAS  PubMed  Google Scholar 

  • Kononenko NL, Wolfenberg H, Pfluger HJ (2009) Tyramine as an independent transmitter and a precursor of octopamine in the locust central nervous system: an immunocytochemical study. J Comp Neurol 512:433–452

    Article  CAS  PubMed  Google Scholar 

  • Kravitz EA (1988) Hormonal control of behavior: amines and biasing of behavioral output in lobsters. Science 241:1775–1781

    Article  CAS  PubMed  Google Scholar 

  • Kravitz EA, Evans PD, Talamo BR, Wallace BG, Battelle BA (1976) Octopamine neurons in lobster: location, morphology, release of octopamine and possible physiological role. Cold Spring Harb Symp Quant Biol 40:127–133

    Article  CAS  PubMed  Google Scholar 

  • Kutsukake M, Komatsu A, Yamamoto D, Ishiwa CS (2000) A tyramine receptor gene mutation causes a defective olfactory behavior in Drosophila melanogaster. Gene 245:31–42

    Article  CAS  PubMed  Google Scholar 

  • Lan YT, Hsu Y (2011) Prior contest experience exerts a long-term influence on subsequent winner and loser effects. Front Zool 8:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Livingstone MS, Harris-Warrick RM, Kravitz EA (1980) Serotonin and octopamine produce opposite postures in lobsters. Science 208:76–79

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Tamotsu S, Iwasaki M, Nisimura T, Shimohigashi M, Hojo MK, Ozaki M (2014) Neuronal projections and putative interaction of multimodal inputs in the subesophageal ganglion in the blowfly, Phormia regina. Chem Senses 39:391–401

    Article  CAS  PubMed  Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila b-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560

    Article  CAS  PubMed  Google Scholar 

  • Momohara Y, Kanai A, Nagayama T (2013) Aminergic control of social status in crayfish agonistic encounters. PLoS One 8:e74489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momohara Y, Yoshida M, Nagayama T (2015) Serotonergic modulation of social status-dependent behavioural plasticity of the crayfish avoidance reaction. J Comp Physiol A 201:1063–1074

    Article  CAS  Google Scholar 

  • Momohara Y, Minami H, Kanai A, Nagayama T (2016) Role of cAMP signalling in winner and loser effects in crayfish agonistic encounters. Eur J Neurosci 44:1886–1895

    Article  PubMed  Google Scholar 

  • Oliveira RF, Silva A, Canario AVM (2009) Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish. Proc R Soc Lond B Biol Sci 276:2249–2256

    Article  Google Scholar 

  • Pedetta S, Kaczer L, Maldonado H (2010) Individual aggressiveness in the crab Chasmagnathus: influence in fight outcome and modulation by serotonin and octopamine. Physiol Behav 101:438–445

    Article  CAS  PubMed  Google Scholar 

  • Pflüger HJ, Duch C (2011) Dynamic neural control of insect muscle metabolism related to motor behavior. Physiology 26:293–303

    Article  PubMed  Google Scholar 

  • Piri M, Rostampour M, Nasehi M, Zarrindast MR (2013) Blockade of the dorsal hippocampal dopamine D1 receptors inhibits the scopolamine induced state-dependent learning in rats. Neuroscience 252:460–467

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Colon D, Vazquez-Acevedo N, Rivera NM, Jezzini SH, Rosenthal J, Ruiz-Rodriguez EA, Baro DJ, Kohn AB, Moroz L, Sosa MA (2010) Cloning and distribution of a putative octopamine/tyramine receptor in the central nervous system of the freshwater prawn Macrobrachium rosenbergii. Brain Res 1348:42–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rillich J, Stevenson PA (2015) Releasing stimuli and aggression in crickets: octopamine promotes escalation and maintenance but not initiation. Front Behav Neurosci 9:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Rillich J, Schlidberger K, Stevenson PA (2011) Octopamine and occupancy: an aminergic mechanism for intruder-resident aggression in crickets. Proc Biol Sci 278:1873–1880

    Article  PubMed  Google Scholar 

  • Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59:533–561

    Article  CAS  PubMed  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477

    Article  CAS  PubMed  Google Scholar 

  • Rotte C, Krach C, Balfanz S, Baymann A, Walz B, Blenau W (2009) Molecular characterization and localization of the first tyramine receptor of the american cockroach (Periplaneta americana). Neurosci 162:1120–1133

    Article  CAS  Google Scholar 

  • Saraswati S, Fox LE, Soil DR, Wu CF (2004) Tyramine and octopamine have opposite effects on the locomotion of Drosophila leave. J Neurosci 58:425–441

    CAS  Google Scholar 

  • Sato D, Nagayama T (2012) Development of agonistic encounters in dominance hierarchy formation of juvenile crayfish. J Exp Biol 215:1210–1217

    Article  PubMed  Google Scholar 

  • Scheiner R, Pluckhahn S, Oney B, Blenau W, Erber J (2002) Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behav Brain Res 136:545–553

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Trimmer BA, Rapus J, Eckert M, Valentine DE, Kravitz EA (1993) Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster. J Comp Neurol 329:129–142

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Budhiraja P, Walter I, Beltz BS, Peckol E, Kravitz EA (1996) Developmental expression of the octopamine phenotype in lobsters, Homarus americanus. J Comp Neurol 371:3–14

    Article  CAS  PubMed  Google Scholar 

  • Selcho M, Pauls D, El Jundi B, Stocker RF, Thum A. S (2012) The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol 520:3764–3378

    Article  CAS  PubMed  Google Scholar 

  • Shiratori C, Suzuki N, Momohara Y, Shiraishi K, Aonuma H, Nagayama T (2017) Cyclic AMP-regulated opposing and parallel effects of serotonin and dopamine on phototaxis in the Marmorkrebs (marbled crayfish). Eur J Neurosci 46:1863–1874

    Article  PubMed  Google Scholar 

  • Sneddon LU, Taylor AC, Huntingford FA, Watson DG (2000) Agonistic behaviour and biogenic amines in shore crabs Carcinus maenas. J Exp Biol 203:537–545

    CAS  PubMed  Google Scholar 

  • Summers CH, Greenberg N (1995) Activation of central biogenic amines following aggressive interaction in male lizards, Anolis carolinensis. Brain Behav Evol 45:339–349

    Article  CAS  PubMed  Google Scholar 

  • Tran DH, Meissner GW, French RL, Baker BS (2014) A small subset of Fruitless subesophageal neurons modulate early courtship in Drosophila. PLoS One 9:e95472

    Article  PubMed  PubMed Central  Google Scholar 

  • Trannoy S, Penn J, Lucey K, Popovic D, Kravitz EA (2016) Short and long-lasting behavioral consequence of agonistic encounters between male Drosophila melanogaster. Porc Natl Acad Sci USA 113:4818–4823

    Article  CAS  Google Scholar 

  • Ueno R, Nagayama T (2012) Interlocking of chelae is a key factor for dominance hierarchy formation in crayfish. J Exp Biol 215:2841–2848

    Article  PubMed  Google Scholar 

  • Watanabe S, Momohara Y, Minami H, Nagayama T (2016) Two types of orienting behaviour during agonistic encounters in the crayfish Procambarus clarkii (Decapoda: Cambaridae). J Crust Biol 36:147–153

    Article  Google Scholar 

  • Winberg S, Nilsson GE, Olsen KH (1992) Changes in brain serotonergic activity during hierarchic behavior in Arctic charr (Salvelinus alpinus L.) are socially induced. J Comp Physiol A 170:93–99

    Article  CAS  PubMed  Google Scholar 

  • Wine JJ, Krasne FB (1972) The organization of escape behaviour in the crayfish. J Exp Biol 56:1–18

    CAS  PubMed  Google Scholar 

  • Yurkovic A, Wang O, Basu AC, Kravitz EA (2006) Learning and memory associated with aggression in Drosophila melanogaster. Proc Natl Acad Sci USA 103:17519–17524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulandt T, Zulandt-Schneider RA, Moore PA (2008) observing agonistic interactions alters subsequent fighting dynamics in the crayfish, Orconectes rusticus. Anim Behav 75:13–20

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Kawamura. K for reading of the manuscript. This work was supported by Grants-in-Aid from the Ministry of Education, Science, Sport, and Culture to TN (16K07432). All experiments were carried out in accordance with the Guide for the care and use of Laboratory animals of Yamagata University (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuto Momohara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momohara, Y., Aonuma, H. & Nagayama, T. Tyraminergic modulation of agonistic outcomes in crayfish. J Comp Physiol A 204, 465–473 (2018). https://doi.org/10.1007/s00359-018-1255-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-018-1255-3

Keywords

Navigation