Skip to main content
Log in

Slow viscoelastic response of resilin

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The high importance of resilin in invertebrate biomechanics is widely known. It is generally assumed to be an almost perfect elastomer in different tissues. Whereas mechanical properties of resilin were previously determined mainly in tension, here we aimed at studying its mechanical properties in compression. Microindentation of resilin from the wing hinge of Locusta migratoria revealed the clear viscoelastic response of resilin: about a quarter of the mechanical response was assigned to a viscous component in our experiments. Mechanical properties were characterized using a generalized Maxwell model with two characteristic time constants, poroelasticity theory, and alternatively using a 1D model with just one characteristic time constant. Slow viscous responses with 1.7 and 16 s characteristic times were observed during indentation. These results demonstrate that the locust flight system is adapted to both fast and slow mechanical processes. The fast highly elastic process is related to the flight function and the slow viscoelastic process may be related to the wing folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen SO (1963) Characterization of a new type of cross-linkage in resilin, a rubber-like protein. Biochim Biophys Acta 69:249–262

    Article  CAS  PubMed  Google Scholar 

  • Andersen SO, Weis-Fogh T (1964) Resilin. A rubberlike protein in arthropod cuticle. Adv Insect Physiol 2:1–65

    Article  CAS  Google Scholar 

  • Appel E, Gorb SN (2011) Resilin-bearing wing vein joints in the dragonfly Epiophlebia superstes. Bioinsp Biomim 6:046006 (11 pp)

    Article  PubMed  Google Scholar 

  • Argatov II, Popov VL (2016) Rebound indentation problem for a viscoelastic half-space and axisymmetric indenter—solution by the method of dimensionality reduction. Z Angew Math Mech 96(8):956–967

    Article  Google Scholar 

  • Bailey K, Weis-Fogh T (1961) Amino acid composition of a new rubber-like protein, resilin. Biochim Biophys Acta 48:452–459

    Article  CAS  PubMed  Google Scholar 

  • Bennet-Clark H (2007) The first description of resilin. J Exp Biol 210:3879–3881. https://doi.org/10.1242/jeb.001339

    Article  PubMed  Google Scholar 

  • Bennet-Clark HC, Lucey ECA (1967) The jump of the flea: a study of the energetics and a model of the mechanism. J Exp Biol 47:59–76

    CAS  PubMed  Google Scholar 

  • Cheng L, Xia X, Scriven LE, Gerberich WW (2005) Spherical-tip indentation of viscoelastic material. Mech Mat 37:213–223

    Article  Google Scholar 

  • Christensen RM (1982) Theory of viscoelasticity. Second Edition. Academic Press, London

    Google Scholar 

  • Elliott GF, Huxley AF, Weis-Fogh T (1965) On the structure of resilin. J Mol Biol 13:791–795

    Article  CAS  Google Scholar 

  • Filippov AE, Popov VL (2007) Fractal Tomlinson model for mesoscopic friction: from microscopic velocity-dependent damping to macroscopic Coulomb friction. Phys Rev E 75:027103

    Article  CAS  Google Scholar 

  • Geike T, Popov VL (2007) Mapping of three-dimensional contact problems into one dimension. Phys Rev E 76:036710

    Article  Google Scholar 

  • Gorb SN (2004) The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton-muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements. Arthr Str Dev 33(3):201–220. https://doi.org/10.1016/j.asd.2004.05.008

    Article  Google Scholar 

  • Gorb SN, Filippov AE (2014) Fibrillar adhesion with no clusterisation: functional significance of material gradient along adhesive setae of insects. Beilstein J Nanotechnol 5:837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Phil Trans R Soc B 357:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas F, Gorb S, Wootton RJ (2000a) Elastic joints in dermapteran hind wings: materials and wing folding. Arthr Str Dev 29:137–146

    Article  CAS  Google Scholar 

  • Haas F, Gorb S, Blickhan R (2000b) The function of resilin in beetle wings. Proc R Soc Lond B 267:1375–1381

    Article  CAS  Google Scholar 

  • Hu Y, Zhao X, Vlassak JJ, Suo Z (2010) Using indentation to characterize the poroelasticity of gels. Appl Phys Lett 96:121904

    Article  Google Scholar 

  • Jensen M, Weis-Fogh T (1962) Biology and physics of locust flight. V. Strength and elasticity of locust cuticle. Phil Trans R Soc B 254:137–169

    Article  Google Scholar 

  • Kothari VK, Rajkhowa R, Gupta VB (2001) Stress relaxation and inverse stress relaxation in silk fibers. J Appl Polymer Sci 82:1147–1154

    Article  CAS  Google Scholar 

  • Kürschner S, Filippov AE (2012) Normal contact between a rigid surface and a viscous body: verification of the method of reduction of dimensionality for viscous media. Fiz Mezomekh 15(4):25–30

    Google Scholar 

  • Lombardi EC, Kaplan DL (1993) Preliminary characterization of resilin isolated from the cockroach, Periplaneta americana. Mater Res Soc Symp Proc 292:3–7

    Article  CAS  Google Scholar 

  • Lyons RE, Nairn KM, Huson MG, Kim M, Dumsday G, Elvin CM (2009) Comparisons of recombinant resilin-like proteins: repetitive domains are sufficient to confer resilin-like properties. Biomacromolecules 10:3009–3014

    Article  CAS  PubMed  Google Scholar 

  • Michels J, Appel E, Gorb SN (2016) Functional diversity of resilin in Arthropoda. Beilstein J Nanotechnol 7:1241–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misak HE, Sabelkin V, Miller L, Asmatulu R, Mall S (2013) Creep and inverse stress relaxation behaviors of carbon nanotube yarns. J Nanosci Nanotechnol 13:8331–8339

    Article  CAS  PubMed  Google Scholar 

  • Peisker H, Michels J, Gorb SN (2013) Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat Comm 4:1661. https://doi.org/10.1038/ncomms2576

    Article  Google Scholar 

  • Persson BNJ, Kovalev A, Gorbb SN (2017) Simple contact mechanics model of the vertebrate cartilage. Soft Matter 13:6349–6362

    Article  CAS  PubMed  Google Scholar 

  • Pohrt R, Popov VL, Filippov AE (2012) Normal contact stiffness of elastic solids with fractal rough surfaces for one- and three-dimensional systems. Phys Rev E 86:026710

    Article  Google Scholar 

  • Popov VL (2010) Kontaktmechanik und Reibung: Von der Nanotribologie bis zur Erdbebendynamik. Springer, Berlin

    Book  Google Scholar 

  • Popov VL, Filippov AE (2012) Adhesive properties of contacts between elastic bodies with randomly rough self-affine surfaces: a simulation with the method of reduction of dimensionality. Phys Mesomech 15:324–329

    Article  Google Scholar 

  • Qin G, Hu X, Cebe P, Kaplan DL (2012) Mechanism of resilin elasticity. Nat Commun 3:1003

    Article  PubMed  PubMed Central  Google Scholar 

  • Santangelo PG, Roland CM (1992) Chain ends and the Mullins effect in rubber. Rubber Chem Technol 65:965

    Article  CAS  Google Scholar 

  • Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley Hoboken

    Book  Google Scholar 

  • Weis-Fogh T (1960) A rubber-like protein in insect cuticle. J Exp Biol 37:889–907

    CAS  Google Scholar 

  • Weis-Fogh T (1961) Thermodynamic properties of resilin, a rubber-like protein. J Mol Biol 3:520–531

    Article  CAS  Google Scholar 

  • Weng L, Chen X, Chen W (2007) Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromol 8:1109–11115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bernhard Jäkle for technical support in performing experiments. This study was supported by the Alexander von Humboldt Foundation (Georg Forster Research Award to AF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kovalev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Appendix

Appendix

The springs’ stiffness distribution could be derived as follows: \(P\left( K \right)\sim {{dy} \mathord{\left/ {\vphantom {{dy} {dK}}} \right. \kern-0pt} {dK}}\), \(y={z_0}+R\sqrt {\left( {x - {x_0}} \right)} ,\) where x and y are horizontal and vertical co-ordinates of the substrate, z is a vertical co-ordinate of the indenting sphere with radius R, x0 and z0 are the vertical co-ordinates of the deepest position of the material and of the indenting sphere (Fig. 4). Following this line, after differentiating Eq. 3, equation shown in the legend to the Fig. 6 could be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, A., Filippov, A. & Gorb, S.N. Slow viscoelastic response of resilin. J Comp Physiol A 204, 409–417 (2018). https://doi.org/10.1007/s00359-018-1248-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-018-1248-2

Keywords

Navigation