Skip to main content
Log in

Odorant receptors and antennal lobe morphology offer a new approach to understanding olfaction in the Asian longhorned beetle

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The Asian longhorned beetle Anoplophora glabripennis (Motchulsky) is an exotic forest pest that has repeatedly invaded North America and Europe from Asia, and has the potential to kill millions of trees and cause billions of dollars in damage. Traps baited with an attractive mixture of volatile organic compounds from hosts have been of limited success in monitoring invasion sites. We propose that lures might be improved through studying the olfactory system of adult beetles, especially the gene family of odorant receptors (ORs) and the structure of the antennal lobes of the brain. Here, we report identification of 132 ORs in the genome of A. glabripennis (inclusive of one Orco gene and 11 pseudogenes), some of which are orthologous to known pheromone receptors of other cerambycid beetles. We also identified three ORs that are strongly biased toward expression in the female transcriptome, and a single OR strongly biased toward males. Three-dimensional reconstruction of the antennal lobes of adults suggested a male-specific macroglomerulus and several enlarged glomeruli in females. We predict that functional characterization of ORs and glomeruli will lead to identification of key odorants in the life history of A. glabripennis that may aid in monitoring and controlling future invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AL:

Antennal lobe

IR:

Ionotropic receptor

MGC:

Macroglomerular complex

OR:

Odorant receptor

OSN:

Olfactory sensory neuron

VOC:

Volatile organic compound

References

  • Allison JD, McKenney JL, Millar JG, McElfresh JS, Mitchell RF, Hanks LM (2012) Response of the woodborers Monochamus carolinensis and Monochamus titillator (Coleoptera: Cerambycidae) to known cerambycid pheromones in the presence and absence of the host plant volatile α-pinene. Environ Entomol 41:1587–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson MA, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MMS, Li M, Hillbur Y, Bohlmann J, Hansson B, Schlyter F (2013) Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genom 14:198

    Article  CAS  Google Scholar 

  • Antony B, Soffan A, Jakše J, Abdelazim MM, Aldosari SA, Aldawood AS, Pain A (2016) Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genom 17:69

    Article  Google Scholar 

  • Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A, Yandell M (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen TA, Harrow ID, Cuzzocrea C, Randolph PW, Hildebrand JG (1995) Distinct projections of two populations of olfactory receptor axons in the antennal lobe of the sphinx moth Manduca sexta. Chem Senses 20:313–323

    Article  CAS  PubMed  Google Scholar 

  • Couto A, Alenius M, Dickson BJ (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15:1535–1547

    Article  CAS  PubMed  Google Scholar 

  • Crook DJ, Lance DR, Mastro VC (2014) Identification of a potential third component of the male-produced pheromone of Anoplophora glabripennis and its effect on behavior. J Chem Ecol 40:1241–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta RD, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452:473–477

    Article  CAS  PubMed  Google Scholar 

  • Dekker T, Ibba I, Siju KP, Stensmyr MC, Hansson BS (2006) Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr Biol 16:101–109

    Article  CAS  PubMed  Google Scholar 

  • Dreyer D, Vitt H, Dippel S, Goetz B, el Jundi B, Kollmann M, Huetteroth W, Schachtner J (2010) 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Front Syst Neurosci 4:3

    PubMed  PubMed Central  Google Scholar 

  • Dubois T, Hajek AE, Smith S (2002) Methods for rearing the Asian longhorned beetle (Coleoptera: Cerambycidae) on artificial diet. Ann Entomol Soc Am 95:223–230

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed AM (2016) The Pherobase: database of pheromones and semiochemicals. http://www.pherobase.com. Accessed 18 June 2016

  • Engsontia P, Sanderson A, Cobb M, Walden KKO, Robertson HM, Brown S (2008) The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem Mol Biol 38:387–397

    Article  CAS  PubMed  Google Scholar 

  • Enjin A, Zaharieva EE, Frank DD, Mansourian S, Suh GSB, Gallio M, Stensmyr MC (2016) Humidity sensing in Drosophila. Curr Biol 26:1352–1358

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. J Microsc 218:52–61

    Article  CAS  PubMed  Google Scholar 

  • Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 15:1548–1553

    Article  CAS  PubMed  Google Scholar 

  • Galizia CG, Sachse S, Rappert A, Menzel R (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 2:473–478

    Article  CAS  PubMed  Google Scholar 

  • Ghaninia M, Hansson BS, Ignell R (2007) The antennal lobe of the African malaria mosquito, Anopheles gambiae—innervation and three-dimensional reconstruction. Arthropod Struct Dev 36:23–39

    Article  PubMed  Google Scholar 

  • Goldman AL, der Goes Van, van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 46:661–666

    Article  Google Scholar 

  • Graves F, Baker TC, Zhang A, Keena M, Hoover K (2016) Sensory aspects of trail-following behaviors in the Asian longhorned beetle, Anoplophora glabripennis. J Insect Behav 29:615–628

    Article  Google Scholar 

  • Haack RA, Hérard F, Sun J, Turgeon JJ (2010) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annu Rev Entomol 55:521–546

    Article  CAS  PubMed  Google Scholar 

  • Hoaglin DC, Iglewicz B, Tukey JW (1986) Performance of some resistant rules for outlier labeling. J Am Stat Assoc 81:991–999

    Article  Google Scholar 

  • Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501

    Article  CAS  PubMed  Google Scholar 

  • Hoover K, Keena M, Nehme M, Wang S, Meng P, Zhang A (2014) Sex-specific trail pheromone mediates complex mate finding behavior in Anoplophora glabripennis. J Chem Ecol 40:169–180

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Angeli S, Schuetz S, Luo Y, Hajek AE (2009) Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Ag For Entomol 11:359–375

    Article  Google Scholar 

  • Ibba I, Angioy AM, Hansson BS, Dekker T (2010) Macroglomeruli for fruit odors change blend preference in Drosophila. Naturwissenschaften 97:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Keena MA (2005) Pourable artificial diet for rearing Anoplophora glabripennis (Coleoptera: Cerambycidae) and methods to optimize larval survival and synchronize development. Ann Entomol Soc Am 98:536–547

    Article  CAS  Google Scholar 

  • Koutroumpa FA, Kárpáti Z, Monsempes C, Hill SR, Hansson BS, Jacquin-Joly E, Krieger J, Dekker T (2014) Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer. Front Ecol Evol 2:65

    Article  Google Scholar 

  • Lacey ES, Moreira JA, Millar JG, Hanks LM (2008) A male-produced aggregation pheromone blend consisting of alkanediols, terpenoids, and an aromatic alcohol from the cerambycid beetle Megacyllene caryae. J Chem Ecol 34:408–417

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ju Q, Jie W, Li F, Jiang X, Hu J, Qu M (2015) Chemosensory gene families in adult antennae of Anomala corpulenta Motschulsky (Coleoptera: Scarabaeidae: Rutelinae). PLoS One 10:e0121504

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG (2011) The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 95:427–447

    Article  PubMed  Google Scholar 

  • McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, Farnum CW, Hawks DC, Ivie MA, Jameson ML, Leschen RAB, Marvaldi AE, McHugh JV, Newton AF, Robertson JA, Thayer MK, Whiting MF, Lawrence JF, Ślipiński A, Maddison DR, Farrell BD (2015) The beetle tree of life reveals Coleoptera survived end Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst Entomol 40:1–46

    Article  Google Scholar 

  • McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, Mitchell RF, Waterhouse RM et al (2016) Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol 17:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng PS, Trotter RT, Keena MA, Baker TC, Yan S, Schwartzberg EG, Hoover K (2014) Effects of pheromone and plant volatile release rates and ratios on trapping Anoplophora glabripennis (Coleoptera: Cerambycidae) in China. Environ Entomol 43:1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Millar JG, Hanks LM (2016) Chemical ecology of cerambycid beetles. In: Wang Q (ed) Cerambycidae of the world: biology and management. CRC Press, Boca Raton (in press)

    Google Scholar 

  • Min S, Minrong A, Shin SA, Sug GSB (2013) Dedicated olfactory neurons mediating attraction behavior to ammonia and armines in Drosophila. Proc Natl Acad Sci USA 110:E1321–E1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missbach C, Dweck HKM, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, Grosse-Wilde E (2014) Evolution of insect olfactory receptors. eLife 3:e02115

    PubMed  PubMed Central  Google Scholar 

  • Mitchell RF, Hughes DT, Luetje CW, Millar JG, Soriano-Agatón F, Hanks LM, Robertson HM (2012) Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem Mol Biol 42:499–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namiki S, Daimon T, Iwatsuki C, Shimada T, Kanzaki R (2014) Antennal lobe organization and pheromone usage in bombycid moths. Biol Lett 10:20140096

    Article  PubMed  PubMed Central  Google Scholar 

  • Nehme ME, Keena MA, Zhang A, Baker TC, Xu Z, Hoover K (2010) Evaluating the use of male-produced pheromone components and plant volatiles in two trap designs to monitor Anoplophora glabripennis. Environ Entomol 39:169–176

    Article  CAS  PubMed  Google Scholar 

  • Nehme ME, Trotter RT, Keena MA, McFarland C, Coop J, Hull-Sanders HM, Meng P, De Moraes CM, Mescher MC, Hoover K (2014) Development and evaluation of a trapping system for Anoplophora glabripennis (Coleoptera: Cerambycidae) in the United States. Environ Entomol 43:1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Delah PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2014) FigTree v1.4.0, a graphical viewer of phylogenetic trees. Edinburgh: University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 17 June 2016

  • Reisenman CE, Christensen TA, Hildebrand JG (2005) Chemosensory selectivity of output neurons innervating an identified, sexually isomorphic olfactory glomerulus. J Neurosci 25:8017–8026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rospars JP, Hildebrand JG (2000) Sexually dimorphic and isomorphic glomeruli in the antennal lobes of the sphinx moth Manduca sexta. Chem Senses 25:119–129

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Sombke A, Lipke E, Kenning M, Müller CHG, Hansson BS, Harzsch S (2012) Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 13:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 36:497–498

    Article  PubMed  Google Scholar 

  • Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    Article  CAS  PubMed  Google Scholar 

  • Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle M-C, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844

    Article  CAS  PubMed  Google Scholar 

  • Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta. J Comp Physiol A 161:23–32

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen Q, Zhao H, Ren B (2016) Identification and comparison of candidate olfactory genes in the olfactory and non-olfactory organs of elm pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) based on transcriptome analysis. PLoS One 11:e0147144

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM (2007) A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci USA 104:14383–14388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham JD, Xu Z, Teale SA (2012) Evidence for a female-produced, long range pheromone of Anoplophora glabripennis (Coleoptera: Cerambycidae). Insect Sci 19:355–371

    Article  CAS  Google Scholar 

  • Wickham JD, Harrison RD, Lu W, Guo Z, Millar JG, Hanks LM, Chen Y (2014) Generic lures attract cerambycid beetles in a tropical montane rain forest in southern China. J Econ Entomol 107:259–267

    Article  PubMed  Google Scholar 

  • Wickham JD, Millar JG, Hanks LM, Zou Y, Wong JCH, Harrison RD, Chen Y (2016) 2R,3S)-2,3-octanediol, a female-produced sex pheromone of Megopis costipennis (Coleoptera: Cerambycidae: Prioninae. Environ Entomol 45:223–228

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Stephen Richards (Baylor College of Medicine Human Genome Sequencing Center) and other members of the Insect 5000 Genomes Asian Longhorned Beetle Genome Consortium for access to genomic and transcriptomic data. We also thank Patty Jansma, Hong Lei, and Kim Lance at the University of Arizona for assistance with brain imaging. Additional thanks to Carrie Crook and David Lance at the USDA-APHIS CPHST Lab and Kelli Hoover of PSU for providing live specimens of Anoplophora glabripennis. Funding was provided through an NIH postdoctoral training Grant (K12 GM000708) to RFM, the University of Memphis FedEx Institute, U.S. NSF Grant DEB1355169 and USDA-APHIS cooperative agreement 15-8130-0547-CA to DDM, and USDA-APHIS cooperative agreement 15-8130-1430-CA to TCB.

Note added in proof

As this paper went to press, we became aware of the recent work of Hu et al. (2016) Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis. Scientific Reports 6:26652, doi: 10.1038/srep26652, which reports findings complementary to ours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Mitchell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (Online Resource 1): Documentation (PDF 6 kb)

359_2016_1138_MOESM2_ESM.pdf

Supplementary material 2 (Online Resource 1A): Odorant receptors annotated from the genome of Anoplophora glabripennis. Model notes and missing exons (PDF 50 kb)

359_2016_1138_MOESM3_ESM.fasta

Supplementary material 3 (Online Resource 1B): Odorant receptors annotated from the genome of Anoplophora glabripennis. Nucleotide sequences in FASTA format (FASTA 141 kb)

359_2016_1138_MOESM4_ESM.fasta

Supplementary material 4 (Online Resource 1C): Odorant receptors annotated from the genome of Anoplophora glabripennis. Peptide sequences in FASTA format (FASTA 48 kb)

359_2016_1138_MOESM5_ESM.pdf

Supplementary material 5 (Online Resource 2): Reads and sex bias of odorant receptor genes from transcriptomes of male and female Anoplophora glabripennis (PDF 67 kb)

359_2016_1138_MOESM6_ESM.pdf

Supplementary material 6 (Online Resource 3): Description and volume of named glomeruli in the antennal lobe of Anoplophora glabripennis (PDF 327 kb)

Supplementary material 7 (Online Resource 4): Documentation (PDF 62 kb)

359_2016_1138_MOESM8_ESM.avi

Supplementary material 8 (Online Resource 4A): Confocal images stacks illustrating glomeruli in the antennal lobes of female Anoplophora glabripennis (AVI 23814 kb)

359_2016_1138_MOESM9_ESM.avi

Supplementary material 9 (Online Resource 4B): Confocal images stacks illustrating glomeruli in the antennal lobes of male Anoplophora glabripennis (AVI 18437 kb)

Supplementary material 10 (Online Resource 5): Documentation (PDF 6 kb)

359_2016_1138_MOESM11_ESM.wrl

Supplementary material 11 (Online Resource 5A): Example 3D reconstruction of the antennal lobes of a female Anoplophora glabripennis. See Figure 4 for names of glomeruli and reference orientation (WRL 4749 kb)

359_2016_1138_MOESM12_ESM.wrl

Supplementary material 12 (Online Resource 5B): Example 3D reconstructions of the antennal lobes of female Anoplophora glabripennis (WRL 3697 kb)

359_2016_1138_MOESM13_ESM.wrl

Supplementary material 13 (Online Resource 5C): Example 3D reconstruction of the antennal lobes of a male Anoplophora glabripennis (WRL 3609 kb)

359_2016_1138_MOESM14_ESM.wrl

Supplementary material 14 (Online Resource 5D): Example 3D reconstruction of the antennal lobes of a male Anoplophora glabripennis (WRL 2330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, R.F., Hall, L.P., Reagel, P.F. et al. Odorant receptors and antennal lobe morphology offer a new approach to understanding olfaction in the Asian longhorned beetle. J Comp Physiol A 203, 99–109 (2017). https://doi.org/10.1007/s00359-016-1138-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-016-1138-4

Keywords

Navigation