Skip to main content

Advertisement

Log in

Sequential learning of relative size by the Neotropical ant Gigantiops destructor

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The question of whether insects can perform concept learning or can use the geometry of space as in mammals has been recently addressed in Hymenoptera in an extensive way. We investigate here the ability of the tropical ant Gigantiops destructor to perform sequential learning and to use size relationships during navigation. Ants were trained to solve a dichotomic six-stage linear maze relying on the apparent width of two vertical landmarks. Each individual ant first learnt to associate a given landmark width to the motor decision of turning right or left to avoid dead-ends independently of a motor routine. When confronted for the first time with a new intermediate-sized pattern, for which no supposed snapshot could have been stored, ants made directional choices indicating that bar width judgments were not absolute but rather relative to the familiar visual patterns seen in the previous chambers. This result demonstrates that ants can generalize relationship rules by interpolating the relative width of a novel stimulus according to visual information kept in spatial working memory. In conclusion, ants can perform conditional discriminations reliably not only when stimuli are simultaneous but also when they are sequential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arena P, Calí M, Patané L, Portera A, Strauss R (2015) Modelling the insect mushroom bodies: application to sequence learning. Neural Netw 67:37–53

    Article  PubMed  Google Scholar 

  • Avarguès-Weber A, Giurfa M (2013) Conceptual learning by miniature brains. Proc Biol Sci 280:1907

    Article  Google Scholar 

  • Avarguès-Weber A, D’Amaro D, Metzler M, Dyer AG (2014) Conceptualization of relative size by honeybees. Front Behav Neurosci 8:80

    PubMed  PubMed Central  Google Scholar 

  • Beugnon G, Fourcassié V (1988) How do red wood ants orient during diurnal nocturnal foraging in a three dimensional system. 2 Field experiments. Ins Soc 35:106–124

    Article  Google Scholar 

  • Beugnon G, Chagné P, Dejean A (2001) Colony structure foraging behavior in the tropical formicine ant Gigantiops destructor. Ins Soc 48:347–351

    Article  Google Scholar 

  • Beugnon G, Lachaud JP, Chagné P (2005) Use of long term stored vector information in the Neotropical ant Gigantiops destructor. J Insect Behav 18:415–432

    Article  Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol A 151:521–543

    Article  Google Scholar 

  • Chameron S, Pastergue-Ruiz I, Beugnon G, Collett TS (1998) The learning of a sequence of visual patterns by the ant Cataglyphis cursor. Proc R Soc B 265:2309–2313

    Article  PubMed Central  Google Scholar 

  • Cheng K, Schultheiss P, Schwarz S, Wystrach A, Wehner R (2014) Beginnings of a synthetic approach to desert ant navigation. Behav Proc 102:51–61

    Article  Google Scholar 

  • Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci USA 107:11638–11643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collett M (2014) A desert ant’s memory of recent visual experience and the control of route guidance. Proc R Soc B 281(2014):0634

    Google Scholar 

  • Collett TS, Cartwright BA (1983) Eidetic images in insects: their role in navigation. Trends Neurosci 6:101–105

    Article  Google Scholar 

  • Collett M, Collett TS (2002) Memory use in insect visual navigation. Nature Rev Neurosci 3:542–552

    Article  CAS  Google Scholar 

  • Collett TS, Collett M (2004) How do insects represent familiar terrain? J Physiol-Paris 98:259–264

    Article  PubMed  Google Scholar 

  • Collett TS, Zeil J (1998) Place and landmarks: an arthropod perspective. In: Healy S (ed) Spatial representation in animals. Oxford University Press, Oxford, pp 18–53

    Google Scholar 

  • Collett TS, Fry SN, Wehner R (1993) Sequence learning by honeybees. J Comp Physiol A 172:145–150

    Google Scholar 

  • Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Cur Biol 23:789–800

    Article  Google Scholar 

  • Dingle H (1962) The occurrence of correcting behavior in various insects. Ecology 43:727–728

    Article  Google Scholar 

  • Durier V, Graham P, Collett TS (2003) Snapshot memories and landmark guidance in wood ants. Curr Biol 13:1614–1618

    Article  CAS  PubMed  Google Scholar 

  • Dyer AG, Griffiths DW (2012) Seeing near and seeing far; behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). J Exp Biol 215:397–404

    Article  PubMed  Google Scholar 

  • Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382:458–461

    Article  CAS  PubMed  Google Scholar 

  • Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of ʻsamenessʼ and ʻdifferenceʼ in an insect. Nature 410:930–933

    Article  CAS  PubMed  Google Scholar 

  • Graham P, Durier V, Collett TS (2004) The binding and recall of snapshot memories in wood ants (Formica rufa L). J Exp Biol 207:393–398

    Article  PubMed  Google Scholar 

  • Harris A, Graham P, Collett TS (2007) Visual cues for the retrieval of landmark memories by navigating wood ants. Curr Biol 17:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horridge GA (1999) Two-dimensional pattern discrimination by the honeybee. Physiol Entomol 24:1–17

    Article  Google Scholar 

  • Horridge GA (2000) Pattern vision of the honeybee (Apis mellifera). What is an oriented edge? J Comp Physiol A 186:521–534

    Article  CAS  PubMed  Google Scholar 

  • Hunter WS, Hall RE (1941) Double alternation behaviour of the white rat in a spatial maze. J Comp Psychol 32:253–256

    Article  Google Scholar 

  • Knaden M, Graham P (2016) The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu Rev Entomol 61:63–76

    Article  PubMed  Google Scholar 

  • Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants Melophorus bagoti: How do they interact with path integration vectors? Neurobiol Learn Mem 83:1–12

    Article  PubMed  Google Scholar 

  • Lent D, Graham P, Collett TS (2009) A motor component to the memories of habitual foraging routes in wood ants? Curr Biol 19:115–121

    Article  CAS  PubMed  Google Scholar 

  • Macquart D, Garnier L, Combe M, Beugnon G (2006) Ant navigation en route to the goal: signature routes facilitate way finding of Gigantiops destructor. J Comp Physiol A 192:221–234

    Article  CAS  Google Scholar 

  • Macquart D, Latil G, Beugnon G (2008) Sensorimotor sequence learning in the ant Gigantiops destructor. Anim Behav 75:1693–1701

    Article  Google Scholar 

  • Mirwan HB, Kevan PG (2015) Maze navigation and route memorization by worker bumblebees [Bombus impatiens (Cresson) (Hymenoptera: Apidae)]. J Insect Behav 28:345–357

    Article  Google Scholar 

  • Pastergue-Ruiz I, Beugnon G, Lachaud JP (1995) Can the ant Cataglyphis cursor (Hymenoptera: Formicidae) encode global landmark–landmark relationships in addition to isolated landmark goal relationships? J Ins Behav 8:115–132

    Article  Google Scholar 

  • Riabinina O, Hempel De Ibarra N, Howard L, Collett TS (2011) Do wood ants learn sequences of visual stimuli? J Exp Biol 214:2739–2748

    Article  PubMed  Google Scholar 

  • Ronacher B (1979) Äquivalenz zwischen Größen- und Helligkeitsunterschieden im Rahmen der visuellen Wahrnehmung der Honigbiene. Biol Cybernetics 32:63–75

    Article  Google Scholar 

  • Rosengren R (1971) Route fidelity visual memory and recruitment behaviour in foraging wood ants of the genus Formica (Hymenoptera Formicidae). Act Zool Fenn 133:1–106

    Google Scholar 

  • Srinivasan MV (1994) Pattern recognition in the honeybee: recent progress. J Insect Physiol A 40:183–194

    Article  Google Scholar 

  • Stach S, Benard J, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature 429:758–761

    Article  CAS  PubMed  Google Scholar 

  • Thiélin-Bescond M, Beugnon G (2005) Vision-independent odometry in the ant Cataglyphis cursor. Naturwiss 92:193–197

    Article  PubMed  Google Scholar 

  • Vowles DM (1965) Maze learning and visual discrimination in the wood ant (Formica rufa). Brit J Psychol 56:15–31

    Article  CAS  PubMed  Google Scholar 

  • Wehner R (1968) Die bedeutung der streifenbreite für die optische winkelmessung der biene (Apis mellifica). Zeit Vergl Physiol 58:322–343

    Article  Google Scholar 

  • Wehner R, Räber F (1979) Visual spatial memory in desert ants Cataglyphis bicolor (Hymenoptera Formicidae). Experientia 35:1569–1571

    Article  Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

  • Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Roper M, Chittka L (2015) Bumblebees utilize floral cues differently on vertically and horizontally arranged flowers. Behav Ecol 26:773–781

    Article  Google Scholar 

  • Wystrach A, Beugnon G (2009) Ants learn geometry and feature. Curr Biol 19:61–66

    Article  CAS  PubMed  Google Scholar 

  • Wystrach A, Cheng K, Sosa S, Beugnon G (2011) Geometry, features and panoramic views: ants in rectangular arenas. J Exp Psychol: Anim Behav Proc 37:420–435

    Google Scholar 

  • Zhang SW, Bartsch K, Srinivasan MV (1996) Maze learning by honeybees. Neurobiol Learn Mem 66:267–282

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Bock F, Si A, Tautz J, Srinivasan MV (2005) Visual working memory in decision making by honeybees. Proc Natl Acad Sci USA 102:5250–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks are due to Jean-Paul Lachaud for helping collecting ants in the Amazonian rainforest in French Guiana. Thanks are also due to Eric Le Bourg and Vincent Fourcassié for helping with the statistical analysis. We are grateful to Adrian Dyer, Martin Giurfa and two anonymous referees for their very constructive comments on the manuscript. This work is dedicated to the memories of my brother Jean-Claude Beugnon and to Raymond Campan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Beugnon.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standard

All experiments comply with the current laws and regulations of the Centre National de la Recherche Scientifique, of the University of Toulouse and of the country (France) where they have been performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video file. Experienced Gigantiops ant homing in a six-stage maze labelled by black vertical landmarks. After completion of the training phase (left turns associated to wide vertical bars ‘W’, and right turns to narrow ones ‘N’, correct exits open, wrong exits close), this control test is realized with all exits open. The ant carries its prey (i.e. a fruit fly) back to the nest relying on a pseudorandom sequence of visual cues (e.g. W-N-N-W-N-W). (MP4 9317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beugnon, G., Macquart, D. Sequential learning of relative size by the Neotropical ant Gigantiops destructor . J Comp Physiol A 202, 287–296 (2016). https://doi.org/10.1007/s00359-016-1075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-016-1075-2

Keywords

Navigation