Skip to main content
Log in

Structure of distress call: implication for specificity and activation of dopaminergic system

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We conducted a set of playback experiments aimed at understanding whether distress-call structure in the greater short-nosed fruit bat Cynopterus sphinx is specific in encoding information relating to stress that attracts conspecifics. We tested the specificity by playing their distress call and its modified version at a foraging site for free-ranging bats, as well as under captive conditions involving either a small group or individuals. In a separate playback experiment, bats showed a significantly greater response when the natural call as opposed to a modified call was played back to captive as well as free-ranging bats at the foraging site. Under captive conditions, bats showed less of a response to the playback of distress calls when in a group than when alone. We subsequently found that tyrosine hydroxylase (TH) and its transcription factor—nuclear receptor related factor 1 (Nurr-1); and the dopamine transporter (DAT) and its receptor (D1DR) were elevated significantly in the amygdala of bats both emitting and responding to a distress call, but not in the case of bats responding to the modified call. These results suggest that distress-call structure encodes information on the state of stress that is capable of being conveyed to conspecifics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-HT 5:

Hydroxytryptamine (Serotonin)

ACTH:

Adrenocorticotropic hormone

CORT:

Corticosterone

D1DR:

Dopamine receptor

DA:

Dopamine

DAT:

Dopamine transporter

GR:

Glucocorticoid receptor

HPA:

Hypothalamic-pituitary adrenal axis

IEG:

Early growth response gene

NE:

Norepinephrine

Nurr-1:

Nuclear receptor related factor-1

qRT-PCR:

Quantitative real-time PCR

SRC-1:

Steroid receptor cofactor-1

TH:

Tyrosine hydroxylase

References

  • Arredondo C, Orellana M, Vecchiola Pereina LA, Galdames L, Andrés ME (2013) PIASγ enhanced SUMO-2 modification of Nurr1 activation-function-1 domain limits Nurr1 transcriptional synergy. PLoS One 8(1):e55035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Avery MI, Racey PA, Fenton MB (1984) Short distance location of hibernaculum by little brown bats. J Zool Lond 204:588–590

    Article  Google Scholar 

  • Balcombe JP, McCracken GF (1992) Vocal recognition in Mexican free-tailed bats: do pups recognize mothers?. Anim Behav 43:79–88

    Article  Google Scholar 

  • Bastian A, Schmidt S (2008) Affect cues in vocalizations of the bat, Megaderma lyra, during agonistic interactions. J Acoust Soc Am 124(1):598–608

    Article  PubMed  Google Scholar 

  • Behr O, von Helversen O (2004) Bat serenades—complex courtship songs of the sac-winged bat (Saccopteryx bilineata). Behav Ecol Sociobiol 56:106–115

    Article  Google Scholar 

  • Blumstein DT, Daniel JC (2004) Yellow-bellied marmots discriminate among the alarm calls of individuals and are more responsive to the calls from juveniles. Anim Behav 68:1257–1265

    Article  Google Scholar 

  • Bohn KM, Schmidt-French B, Ma ST, Pollak GD (2008) Syllable acoustics, temporal patterns, and call composition vary with behavioural context in Mexican free-tailed bats. J Acoust Soc Am 124(3):1838–1848

    Article  PubMed  PubMed Central  Google Scholar 

  • Budenz T, Heib S, Kusch J (2009) Functions of bat social calls: the influence of local abundance, interspecific interactions and season on the production of pipistrelle (Pipistrellus pipistrellus) type D social calls. Acta Chiropterol 11(1):173–182

    Article  Google Scholar 

  • Carter GG, Fenton MB, Faure PA (2009) White-winged vampire bats (Diaemus youngi) exchange contact calls. Can J Zool 87(7):604–608

    Article  Google Scholar 

  • Chung S, Hedlund E, Hwang M, Kim DW, Shin BS, Hwang DY, Kang UJ, Isacson O, Kim KS (2005) The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci 28(2):241–252

    Article  PubMed  CAS  Google Scholar 

  • Clement MJ, Kanwal JS (2012) Simple syllabic calls accompany discrete behavior patterns in captive Pteronotus parnellii: an illustration of the motivation-structure hypothesis. Sci World J 2012:128695

    Article  Google Scholar 

  • Conover MR (1994) Stimuli eliciting distress calls in adult passerines and response of predators and birds to their broadcast. Behaviour 131(1–2):19–37

    Article  Google Scholar 

  • Davis WE (1991) Evolution of distress call in birds: still an enigma. Bird Obs 19:187–190

    Google Scholar 

  • de la Mora MP, Gallegos-Cari A, Arizmendi-Garcia Y, Marcellino D, Fuxe K (2009) Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: structural and functional analysis. Prog Neurobiol 90(2):198–216

    Article  PubMed  Google Scholar 

  • Eells JB, Lipska BK, Yeung SK, Misler JA, Nikodem VM (2002) Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dopamine levels and increased stress-induced loco motor activity. Behav Brain Res 136(1):267–275

    Article  PubMed  CAS  Google Scholar 

  • Eells JB, Misler JA, Nikodem VM (2006) Reduced tyrosine hydroxylase and GTP cyclohydrolase mRNA expression, tyrosine hydroxylase activity, and associated neurochemical alterations in Nurr1-null heterozygous mice. Brain Res Bull 70(2):186–195

    Article  PubMed  CAS  Google Scholar 

  • Eells JB, Wilcots J, Sisk S, Guo-Rose SX (2012) NR4A gene expression is dynamically regulated in the ventral tegmental area aopamine neurons and is related to expression of dopamine neurotransmission genes. J Mol Neurosci 46(3):545–553

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Elangovan V, Marimuthu G, Kunz TH (2001) Temporal patterns of resource use by the short-nosed fruit bat, Cynopterus sphinx (Megachiroptera: Pteropodidae). J Mammal 82(1):161–165

    Article  Google Scholar 

  • Fenton MB (1985) Communication in the Chiroptera. Indiana University Press, Bloomington

    Google Scholar 

  • Fenton MB, Belwood JJ, Fullard JH, Kunz TH (1976) Responses of Myotis lucifugus (Chiroptera: Vespertilionidae) to calls of conspecifics and to other sounds. Can J Zool 54(9):1443–1448

    Article  Google Scholar 

  • Fichtel C, Hammerschmidt K (2002) Responses of red fronted lemurs to experimentally modified alarm calls: evidence for urgency based changes in call structure. Ethology 108:763–777

    Article  Google Scholar 

  • Filipenko ML, Alekseyenko OV, Beilina AG, Kamhynina TP, Kudryavtseva NN (2001) Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience. Brain Res 96(1–2):77–81

    Article  CAS  Google Scholar 

  • Fujisawa H, Okuno S (2005) Regulatory mechanism of tyrosine hydroxylase activity. Biochem Biophys Res Commun 338(1):271–276

    Article  PubMed  CAS  Google Scholar 

  • Gadziola MA, Grimsley JMS, Faure PA, Wenstrup JJ (2012) Social vocalizations of big brown bats vary with behavioural context. PLoS One 7(9):e44550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ganesh A, Raghuram H, Nathan PT, Marimuthu G, Rajan KE (2010) Distress call-induced gene expression in the brain of the Indian short-nosed fruit bat. Cynopterus sphinx. J Comp Physiol A 196(2):155–164

    Article  CAS  Google Scholar 

  • Gil M, McKinney C, Lee MK, Eells JB, Phyillaier MA, Nikodem VM (2007) Regulation of GTP cyclohydrolase I expression by orphan receptor Nurr1 in cell culture and in vivo. J Neurochem 101(1):142–150

    Article  PubMed  CAS  Google Scholar 

  • Göd M, Franz A, Hödi W (2007) The influence of internote-interval variation of the advertisement call on the phonotactic behaviour in male Allobates femoralis (Dendrobatidae). Amphibia-Reptilia 28:227–234

    Article  Google Scholar 

  • Herman JP, Guillonneau D, Dantzer R, Scatton B, Semerdjian-Rouquier L, Le Moal M (1982) Differential effects of inescapable foot shocks and of stimuli previously paired with inescapable foot shocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci 30(25):2207–2214

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24(3):151–180

    Article  PubMed  CAS  Google Scholar 

  • Högstedt G (1983) Adaption unto death: function of fear screams. Am Nat 121(4):562–570

    Article  Google Scholar 

  • Huang X, Kanwal JS, Jiang T, Long Z, Luo B, Yue X, Gu Y, Feng J (2015) Situational and age-dependent decision making during life threatening distress in Myotis macrodactylus. PLoS One 10(7):e0132817

    Article  PubMed  PubMed Central  Google Scholar 

  • Isovich E, Engelman M, Landgraf R, Fuchs E (2001) Social isolation after a single defeat reduces striatal dopamine transporter binding in rats. Eur J Neurosci 13(6):1254–1256

    Article  PubMed  CAS  Google Scholar 

  • Iwawaki T, Kohno K, Kobayashi K (2000) Identification of a potential nurr1 response in cultured cells. Biochem Biophys Res Commun 274(3):590–595

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J, Chen S, Le WD (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77(1–2):128–138

    Article  PubMed  CAS  Google Scholar 

  • Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29(50):15923–15932

    Article  PubMed  CAS  Google Scholar 

  • Kalin NH, Takahashi LK, Chen FL (1994) Restraint stress increases corticotropin-releasing hormone mRNA content in the amygdala and paraventricular nucleus. Brain Res 656:182–186

    Article  PubMed  CAS  Google Scholar 

  • Kanwal JS, Mastumura S, Ohemiller K, Suga N (1994) Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. J Acoust Soc Am 96(3):1229–1254

    Article  PubMed  CAS  Google Scholar 

  • Kanwal JS, Zhang Z, Feng J (2013) Decision-making and socioemotional vocal behavior in bats. In: Adams RA, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer-Verlag, New York, pp 243–270

    Chapter  Google Scholar 

  • Kinsler LE, Frey AR (1962) Fundamentals of acoustics. John Wiley, New York

    Google Scholar 

  • Koenig WD, Stanback MT, Hoop PN, Mumme RL (1991) Distress call in the acorn woodpecker. Condor 93(3):637–643

    Article  Google Scholar 

  • Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G (2005) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 93(3):1598–1610

    Article  PubMed  Google Scholar 

  • Kumar SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67(2):443–462

    Article  Google Scholar 

  • Kunz TH, Brock CE (1975) A comparison of mist-nets and ultrasonic detectors for monitoring flight activity of bats. J Mammal 56:907–911

    Article  Google Scholar 

  • Lawrence BD, Simmons JA (1982) Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for the echolocation of bats. J Acoust Soc Am 71(3):585–590

    Article  PubMed  CAS  Google Scholar 

  • Le W, Conneely OM, He Y, Jankovic J, Appel SH (1999) Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurones to MPTP-induced injury. J Neurochem 73(5):2218–2221

    PubMed  CAS  Google Scholar 

  • Lebel E, Gauthier Y, Moreau A, Drouin J (2001) Pitx3 activates mouse tyrosine hydroxylase promoter via a high-affinity binding site. J Neurochem 77(2):558–567

    Article  PubMed  CAS  Google Scholar 

  • Leussis MP, Andersen SL (2008) Is adolescence a sensitive period for depression? Behavioral and neuroanatomical findings from a social stress model. Synapse 62(1):22–30

    Article  PubMed  CAS  Google Scholar 

  • Leussis MP, Lawson K, Stone K, Andersen SL (2008) The enduring effects of an adolescent social stressor on synaptic density, part II: poststress reversal of synaptic loss in the cortex by adinazolam and MK-801. Synapse 62(3):185–192

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Kanwal JS, Jiang TL, Liu Y, Feng J (2015) Social and vocal behavior in adult greater tube-nosed bats (Murina leucogaster). Zoology 118:192–202

    Article  PubMed  Google Scholar 

  • Lucas LR, Celen Z, Tamashiro KL, Blanchard RJ, Blanchard DC, Markham C, Sakai RR, McEwen BS (2004) Repeated exposure to social stress has long-term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neuroscience 124(2):449–457

    Article  PubMed  CAS  Google Scholar 

  • Mariappan S, Bogdanowicz W, Marimuthu G, Rajan KE (2013) Distress calls of the greater short-nosed fruit bat Cynopterus sphinx activate hypothalamic-pituitary-adrenal (HPA) axis in conspecifics. J Comp Physiol A 199(9):775–783

    Article  CAS  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43(1):2–15

    Article  PubMed  Google Scholar 

  • Moore TM, Brown T, Cade M, Eells JB (2008) Alterations in amphetamine-stimulated dopamine overflow due to the Nurr1-null heterozygous genotype and post-weaning isolation. Synapse 62(10):764–774

    Article  PubMed  CAS  Google Scholar 

  • Morton ES (1977) On the occurrence and significance of motivation structural rules in some bird and mammal sounds. Am Nat 111(981):855–869

    Article  Google Scholar 

  • Nagatsu T, Ichinose H (1999) Molecular biology of catecholamine related enzymes in relation to Parkinsons’s disease. Cell Mol Neurobiol 19(1):57–66

    Article  PubMed  CAS  Google Scholar 

  • Owings DH, Morton ES (1998) Animal vocal communication: a new approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74(5):301–320

    Article  PubMed  CAS  Google Scholar 

  • Pfalzer G, Kusch J (2003) Structure and variability of bat social calls: implications for specificity and individual recognition. J Zool Lond 261:21–33

    Article  Google Scholar 

  • Price T, Wadewitz P, Cheney D, Seyfarth R, Hammerschmidt K, Fisher J (2015) Vervets revisited: a quantitative analysis of alarm call structure and context specificity. Sci Rep 5:13220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Riddle EL, Fleckenstein AE, Hanson GR (2005) Role of monoamine transporters in mediating psychostimulant effect. AAPS J 7(4):E847–E851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenkranz JA, Grace AA (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22(1):324–337

    PubMed  CAS  Google Scholar 

  • Russ JM, Jones G, Racey PA (1998) Intraspecific responses to distress calls of the pipistrelle bat, Pipistrellus pipistrellus. Anim Behav 55(3):705–713

    Article  PubMed  Google Scholar 

  • Russ JM, Jones G, Mackie IJ, Racey PA (2004) Interspecific responses to distress calls in bats (Chiroptera: Vespertilionidae): a function for convergence in call design? Anim Behav 67(6):1005–1014

    Article  Google Scholar 

  • Russ JM, Jones G, Racey PA (2005) Responses of soprano pipistrelles, Pipistrellus pygmaeus, to their experimentally modified distress calls. Anim Behav 70(2):397–404

    Article  Google Scholar 

  • Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ (2001) Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 76(5):1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Simeone A (2005) Genetic control of dopaminergic neuron differentiation. Trends Neurosci 28(2):62–65

    Article  PubMed  CAS  Google Scholar 

  • Son GH, Chung S, Geum D, Knag SS, Choi WS, Kim K, Choi S (2007) Hyperactivity and alteration of the midbrain dopaminergic system in maternally stressed male mice offspring. Biochem Biophys Res Commun 352(3):823–829

    Article  PubMed  CAS  Google Scholar 

  • Srinivasulu C, Srinivasulu B (2002) Greater short-nosed fruit bat (Cynopterus sphinx) foraging and damage in vineyards in India. Acta Chiropterol 4(2):167–171

    Article  Google Scholar 

  • Tobón KE, Cheng D, Kuzhikandathil V (2012) MicroRNA 142-3p Mediates post-transcriptional regulation of D1 dopamine receptor expression. PLoS One 7(11):e49288

    Article  PubMed  PubMed Central  Google Scholar 

  • Trainor BC (2011) Stress responses and the mesolimbic dopamine system: social contexts and sex differences. Horm Behav 60(5):457–469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Undieh AS (2010) Pharmacology of signalling induced by D1-like receptor activation. Pharmacol Ther 128(1):37–60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Bockstaele EJ, Bajic D, Proudfit H, Valentino RJ (2001) Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav 73(3):273–283

    Article  PubMed  Google Scholar 

  • Van Parijs SM, Corkeron PJ (2002) Ontogeny of vocalisations in infant black flying foxes Pteropus alecto. Behaviour 139(9):1111–1124

    Article  Google Scholar 

  • Verheij MM, Cools AR (2008) Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 585(2–3):228–244

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GS, Boughman JW (1998) Social calls coordinate foraging in greater spear-nosed bats. Anim Behav 55(2):337–350

    Article  PubMed  Google Scholar 

  • Yamamoto R, Ueta Y, Kato N (2007) Dopamine induces a slow after depolarization in lateral amygdala neurons. J Neurophysiol 98(2):984–992

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Brock Fenton, Dr. Paul A. Racey and another anonymous reviewer for their suggestions that improved this manuscript. We also thank Przemek Chylarecki for his help with the R software. This research was supported by Council of Scientific and Industrial Research (Grant no. 37/(1426)/10/EMR-II/2010), Government of India, through major project awarded to KER and INSA Senior Scientist awarded to GM. The Department of Animal Science is supported by UGC-SAP-DRS-II. Experimental protocols used in this study were approved by Institutional Animal Ethical Committee (03/AS/BUWAEC/2008) of Bharathidasan University and complied with the laws of India. Experiments were designed to minimize the number of animals used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koilmani Emmanuvel Rajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariappan, S., Bogdanowicz, W., Raghuram, H. et al. Structure of distress call: implication for specificity and activation of dopaminergic system. J Comp Physiol A 202, 55–65 (2016). https://doi.org/10.1007/s00359-015-1053-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1053-0

Keywords

Navigation