Skip to main content
Log in

Facultative thermogenesis during brooding is not the norm among pythons

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Facultative thermogenesis is often attributed to pythons in general despite limited comparative data available for the family. While all species within Pythonidae brood their eggs, only two species are known to produce heat to enhance embryonic thermal regulation. By contrast, a few python species have been reported to have insignificant thermogenic capabilities. To provide insight into potential phylogenetic, morphological, and ecological factors influencing thermogenic capability among pythons, we measured metabolic rates and clutch-environment temperature differentials at two environmental temperatures—python preferred brooding temperature (31.5 °C) and a sub-optimal temperature (25.5 °C)—in six species of pythons, including members of two major phylogenetic branches currently devoid of data on the subject. We found no evidence of facultative thermogenesis in five species: Aspidites melanocephalus, A. ramsayi, Morelia viridis, M. spilota cheynei, and Python regius. However, we found that Bothrochilus boa had a thermal metabolic sensitivity indicative of facultative thermogenesis (i.e., a higher metabolic rate at the lower temperature). However, its metabolic rate was quite low and technical challenges prevented us from measuring temperature differential to make conclusions about facultative endothermy in this species. Regardless, our data combined with existing literature demonstrate that facultative thermogenesis is not as widespread among pythons as previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angilletta MJ Jr, Sears MW (2003) Is parental care the key to understanding endothermy? Am Nat 162:821–825

    Article  PubMed  Google Scholar 

  • Ashmore GM, Janzen FJ (2003) Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures. Oecologia 134:182–188. doi:10.1007/s00442-002-1109-z

    Article  PubMed  Google Scholar 

  • Aubret F, Bonnet X, Shine R, Olivier L (2002) Fat is sexy for females but not males: the influence of body reserves on reproduction in snakes (Vipera aspis). Horm Behav 42:135–147. doi:10.1006/hbeh.2002.1793

    Article  PubMed  Google Scholar 

  • Barker DG, Barker TM, Davis MA, Schuett GW (2015) A review of the systematics and taxonomy of Pythonidae: an ancient serpent lineage. Zool J Linn Soc Lond. doi:10.1111/zoj.12267

    Google Scholar 

  • Brashears JA, DeNardo DF (2013) Revisiting python thermogenesis: brooding Burmese pythons (Python bivittatus) cue on body, not clutch, temperature. J Herpetol 47:440–444. doi:10.1670/12-050

    Article  Google Scholar 

  • Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, Princeton

    Google Scholar 

  • Ellis TM, Chappell MA (1987) Metabolism, temperature relations, maternal behavior, and reproductive energetics in the ball python (Python regius). J Comp Physiol B 157:393–402. doi:10.1007/BF00693366

    Article  Google Scholar 

  • Farmer CG (2000) Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am Nat 155:326–334. doi:10.1086/303323

    Article  PubMed  Google Scholar 

  • Harlow P, Grigg G (1984) Shivering thermogenesis in a brooding diamond python, Python spilotes spilotes. Copeia 4:959–965. doi:10.2307/1445340

    Article  Google Scholar 

  • Hohtola E (2004) Shivering thermogenesis in birds and mammals. In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanisms, adaptation, and application: Twelfth international hibernation symposium, vol 27. Institute of Arctic Biology, University of Alaska, Fairbanks, pp 241–252

    Google Scholar 

  • Jacobs HJ, Auliya M, Böhme W (2009) Zur Taxonomie des dunklen Tigerpythons, Python molurus bivittatus Kuhl, 1820, speziell der Population von Sulawesi. Sauria 31:5–16

    Google Scholar 

  • Lasiewski RC, Acosta AL, Bernstein MH (1966) Evaporative water loss in birds—part I. Characteristics of the open flow method of determination, and their relation to estimates of thermoregulatory ability. Comp Biochem Physiol 19:445–457. doi:10.1016/0010-406X(66)90153-8

    Article  Google Scholar 

  • Ott BD, Secor SM (2007) Adaptive regulation of digestive performance in the genus Python. J Exp Biol 210:340–356. doi:10.1242/jeb.02626

    Article  PubMed  Google Scholar 

  • Pearson D, Shine R, Williams A (2003) Thermal biology of large snakes in cool climates: a radio-telemetric study of carpet pythons (Morelia spilota imbricata) in south-western Australia. J Therm Biol 28:117–131. doi:10.1016/S0306-4565(02)00048-7

    Article  Google Scholar 

  • Ramesh C, Bhupathy S (2010) Breeding biology of Python molurus molurus in Keoladeo National Park, Bharatpur, India. Herpetol J 20:157–163

    Google Scholar 

  • Reynolds RG, Niemiller ML, Revell LJ (2014) Toward a tree-of-life for the boas and pythons: multilocus species-level phylogeny with unprecendented taxon sampling. Mol Phylogenet Evol 71:201–213. doi:10.1016/j.ympev.2013.11.011

    Article  Google Scholar 

  • Ross RA, Marzec G (1990) The reproductive husbandry of pythons and boas. Institute for Herpetological Research, Stanford

    Google Scholar 

  • Secor SM, Diamond J (1995) Determinants of the postfeeding metabolic response of Burmese pythons, Python molurus. Physiol Zool 70:202–212

    Google Scholar 

  • Shine R (1992) Relative clutch mass and body shape in lizards and snakes: is reproductive investment constrained or optimized? Evolution 46(3):828–833. doi:10.2307/2409650

    Article  Google Scholar 

  • Shine R (2004) Incubation regimes of cold-climate reptiles: the thermal consequences of nest-site choice, viviparity and maternal basking. Biol J Linn Soc 83:145–155. doi:10.1111/j.1095-8312.2004.00376.x

    Article  Google Scholar 

  • Shine R, Harlow PS (1996) Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 77:1808–1817. doi:10.2307/2265785

    Article  Google Scholar 

  • Slip DJ, Shine R (1988) Reptilian endothermy: a field study of thermoregulation by brooding diamond pythons. J Zool 216:367–378. doi:10.1111/j.1469-7998.1988.tb02435.x

    Article  Google Scholar 

  • Stahlschmidt ZR, DeNardo DF (2009) Effect of nest temperature on egg-brooding dynamics in Children’s pythons. Physiol Behav 98:302–306. doi:10.1016/j.physbeh.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Stahlschmidt ZR, DeNardo DF (2010) Parental care in snakes. In: Aldridge RD, Sever DM (eds) Reproductive biology and phylogeny of snakes. Science Publishers Inc, Enfield, pp 673–702

    Google Scholar 

  • Stahlschmidt ZR, Hoffman TCM, DeNardo DF (2008) Postural shifts during egg-brooding and their impact on egg water balance in Children’s pythons (Antaresia childreni). Ethology 114:1113–1121. doi:10.1111/j.1439-0310.2008.01553.x

    Article  Google Scholar 

  • Stahlschmidt ZR, Shine R, DeNardo DF (2012) Temporal and spatial complexity of maternal thermoregulation in tropical pythons. Physiol Biochem Zool 85:219–230. doi:10.1086/665663

    Article  PubMed  Google Scholar 

  • Van Mierop LHS, Barnard SM (1978) Further observations on thermoregulation in the brooding female Python molurus bivittatus (Serpentes: Boidae). Copeia 1978:615–621. doi:10.2307/1443687

    Article  Google Scholar 

  • Vinegar A, Hutchison H, Dowling HG (1970) Metabolism, energetics, and thermoregulation during brooding of snakes of the genus Python (Reptilia: Boidae). Zool N Y 55:19–49

    Google Scholar 

  • Walsberg GE, Hofmann TCM (2006) Using direct calorimetry to test the accuracy of indirect calorimetry in an ectotherm. Physiol Biochem Zool 79:830–835. doi:10.1086/505514

    Article  PubMed  Google Scholar 

  • Wilson S, Swan G (2008) A complete guide to reptiles of Australia. Reed New Holland, Sydney

    Google Scholar 

Download references

Acknowledgments

This study was funded by the National Science Foundation, IOS-0543979 to DFD. All procedures performed in this study were in accordance with the ethical standards of the Institutional Animal Care and Use Committee at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jake Brashears.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brashears, J., DeNardo, D.F. Facultative thermogenesis during brooding is not the norm among pythons. J Comp Physiol A 201, 817–825 (2015). https://doi.org/10.1007/s00359-015-1025-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1025-4

Keywords

Navigation