Skip to main content
Log in

Motion cues improve the performance of harnessed bees in a colour learning task

  • Short Communication
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The proboscis extension conditioning (PER) is a successful behavioural paradigm for studying sensory and learning mechanisms in bees. Whilst mainly used with olfactory and tactile stimuli, more recently reliable PER conditioning has been achieved with visual stimuli such as colours and looming stripes. However, the results reported in different studies vary quite strongly, and it remains controversially discussed how to best condition visual PER. It is particularly striking that visual PER leads to more limited performance as compared to visual conditioning of free-flying bees. It could be that visual PER learning is affected by the lack of movement and that the presence of visual motion cues could compensate for it. We tested whether bees would show differences in learning performances when conditioned either with a colour and motion stimulus in combination or with colour alone. Colour acquisition was improved in the presence of the motion stimulus. The result is consistent with the idea that visual learning might be tightly linked to movement in bees, given that they use vision predominantly during flight. Our results further confirm recent findings that successful visual PER conditioning in bees is achievable without obligatorily removing the antennae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Backhaus W, Menzel R, Kreißl S (1987) Multidimensional scaling of colour similarity in bees. Biol Cybern 56:293–304

    Article  Google Scholar 

  • Baird E, Srinivasan MV, Zhang S, Cowling A (2005) Visual control of flight speed in honeybees. J Exp Biol 208:3895–3905

    Article  PubMed  Google Scholar 

  • Baird E, Boeddeker N, Ibbotson MR, Srinivasan MV (2013) A universal strategy for visually guided landing. PNAS 110:18686–18691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behrends A, Scheiner R, Baker N, Amdam GV (2007) Cognitive aging is linked to social role in honey bees (Apis mellifera). Exp Gerontol 42:1146–1153

    Article  PubMed Central  PubMed  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psych 97:107–119

    Article  CAS  Google Scholar 

  • Collett TS, Hempel de Ibarra N, Riabinina O, Philippides A (2013) Coordinating compass-based and nest-based flight directions during bumblebee learning and return flights. J Exp Biol 216:1105–1113

    Article  PubMed  Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchung des Farbensehens der Biene. Z vergl Physiol 38:413–478

    Google Scholar 

  • Dobrin SE, Fahrbach SE (2012) Visual associative learning in restrained honey bees with intact antennae. PLoS ONE 7:e37666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Felsenberg J, GehringK, Antemann V, Eisenhardt D (2011) Behavioural pharmacology in classical conditioning of the proboscis extension response in honeybees (Apis mellifera) J Vis Exp 47:2282

  • Gerber B, Smith BH (1998) Visual modulation of olfactory learning in honeybees. J Exp Biol 201:2213–2217

    CAS  PubMed  Google Scholar 

  • Hempel de Ibarra N, Vorobyev M, Menzel R (2014) Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A 200:411–433

    Article  CAS  Google Scholar 

  • Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N (2006) Associative visual learning, colour discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A 192:691–700

    Article  Google Scholar 

  • Hori S, Takeuchi H, Kubo T (2007) Associative learning and discrimination of motion cues in the harnessed honeybee Apis mellifera L. J Comp Physiol A 193:825–833

    Article  Google Scholar 

  • Humphries MA, Müller U, Fondrk MK, Page RE Jr (2003) PKA and PKC content in the honey bee central brain differs in genotypic strains with distinct foraging behavior. J Comp Physiol A 189:555–562

    Article  CAS  Google Scholar 

  • Jernigan CM, Roubik DW, Wcislo WT, Riveros AJ (2014) Color-dependent learning in restrained Africanized honey bees. J Exp Biol 217:337–343

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara M (1957) Bildung des bedingten Reflexes von Pavlovs Typusbei der Honigbiene, Apis mellifica. J FacSci Hokkaido Univ Zool 13:458–464

    Google Scholar 

  • Lehrer M (1994) Spatial vision in the honeybee: the use of different cues in different tasks. Vision Res 34:2363–2385

    Article  CAS  PubMed  Google Scholar 

  • Lehrer M, Srinivasan MV (1993) Object detection by honeybees: why do they land on edges? J Comp Physiol A 173:23–32

    Article  Google Scholar 

  • Lehrer M, Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bee’s visual world with a third dimension. Nature 332:356–357

    Article  Google Scholar 

  • Letzkus P, Boeddeker N, Wood JT, Zhang SW, Srinivasan M (2008) Lateralization of visual learning in the honeybee. Biol Lett 4:16–18

    Article  PubMed Central  PubMed  Google Scholar 

  • Linander N, Hempel de Ibarra N, Laska M (2012) Olfactory detectability of l-amino acids in the European honeybee (Apis mellifera). Chem Senses 37:631–638

    Article  CAS  PubMed  Google Scholar 

  • Masuhr T, Menzel R (1972) Learning experiments on the use of side specific information in the olfactory and visual system in the honeybee of (Apis mellifica). In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin, pp 315–322

    Chapter  Google Scholar 

  • Matsumoto Y, Menzel R, Sandoz JC, Giurfa M (2012) Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. J Neurosci Methods 211:159–167

    Article  PubMed  Google Scholar 

  • Menzel R (1968) Das Gedächtnis der HonigbienefürSpektralfarben. Z vergl Physiol 60:82–102

    Article  Google Scholar 

  • Menzel R (1969) Das Gedächtnis der HonigbienefürSpektralfarben. Z vergl Physiol 63:290–309

    Article  Google Scholar 

  • Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction. The perception of colour. MacMillan, London, pp 262–288

    Google Scholar 

  • Mota T, Giurfa M, Sandoz JC (2011a) Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem 18:144–155

    Article  PubMed  Google Scholar 

  • Mota T, Roussel E, Sandoz JC, Giurfa M (2011b) Visual aversive conditioning of the sting extension reflex in harnessed honeybees. J Exp Biol 214:3577–3587

    Article  PubMed  Google Scholar 

  • Nicholls E, Hempel de Ibarra N (2013) Pollen elicits proboscis extension but does not reinforce PER learning in honeybees. Insects 4:542–557

    Article  Google Scholar 

  • Niggebrügge C, Hempel de Ibarra N (2003) Colour-dependent target detection by bees. J Comp Physiol 189:915–918

    Article  Google Scholar 

  • Niggebrügge C, Leboulle G, Menzel R, Komischke B, Hempel de Ibarra N (2009) Fast learning but coarse discrimination of colours in restrained honeybees. J Exp Biol 212:1344–1350

    Article  PubMed  Google Scholar 

  • Riveros AJ, Gronenberg W (2009) Learning from learning and memory in bumblebees. Commun Integrat Biol 2:437–440

    Article  Google Scholar 

  • Riveros AJ, Gronenberg W (2012) Decision-making and associative color learning in harnessed bumblebees (Bombus impatiens). Anim Cogn 15:1183–1193

    Article  PubMed  Google Scholar 

  • Sakura M, Okada R, Aonuma H (2011) Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm. Proc R Soc B 279:535–542

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheiner R, Erber J, Page RE (1999) Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). J Comp Physiol A 185:1–10

    Article  CAS  PubMed  Google Scholar 

  • Scheiner R, Page RE, Erber J (2001) The effects of genotype, foraging role, and sucrose responsiveness on the tactile learning performance of honey bees (Apis mellifera L.) Neurobiol. Learn Mem 76:138–150

    Article  CAS  Google Scholar 

  • Scheiner R, Barnert M, Erber J (2003) Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie 34:67–72

    Article  Google Scholar 

  • Scheiner R, Toteva A, Reim T, Søvik E, Barron AB (2014) Differences in the phototaxis of pollen and nectar foraging honey bees are related to their octopamine brain titers. Front Physiol 5:116

    Article  PubMed Central  PubMed  Google Scholar 

  • von Helversen O (1972) Zurspektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 8:439–472

    Article  Google Scholar 

  • Wright GA, Mustard JA, Kottcamp SM, Smith BH (2007) Olfactory memory formation and the influence of reward pathway during appetitive learning by honey bees. J Exp Biol 210:4024–4033

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

HS and NH thank the Royal Society (UK) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Balamurali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamurali, G.S., Somanathan, H. & Hempel de Ibarra, N. Motion cues improve the performance of harnessed bees in a colour learning task. J Comp Physiol A 201, 505–511 (2015). https://doi.org/10.1007/s00359-015-0994-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-0994-7

Keywords

Navigation