Skip to main content
Log in

Clutter and conspecifics: a comparison of their influence on echolocation and flight behaviour in Daubenton’s bat, Myotis daubentonii

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We compared the influence of conspecifics and clutter on echolocation and flight speed in the bat Myotis daubentonii. In a large room, actual pairs of bats exhibited greater disparity in peak frequency (PF), minimum frequency (F MIN) and call period compared to virtual pairs of bats, each flying alone. Greater inter-individual disparity in PF and F MIN may reduce acoustic interference and/or increase signal self-recognition in the presence of conspecifics. Bats flying alone in a smaller flight room, to simulate a more cluttered habitat as compared to the large flight room, produced calls of shorter duration and call period, lower intensity, and flew at lower speeds. In cluttered space, shorter call duration should reduce masking, while shorter call period equals more updates to the bat’s auditory scene. Lower intensity likely reflects reduced range detection requirements, reduced speed the demands of flying in clutter. Our results show that some changes (e.g. PF separation) are associated with conspecifics, others with closed habitat (e.g. reduced call intensity). However, we demonstrate that call duration, period, and flight speed appear similarly influenced by conspecifics and clutter. We suggest that some changes reduce conspecific interference and/or improve self-recognition, while others demonstrate that bats experience each other like clutter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BW:

Call bandwidth (F MAX −F MIN)

FM:

Frequency-modulated

F MAX :

Maximum call frequency (−10 dB from PF)

F MIN :

Minimum call frequency (−10 dB from PF)

JAR:

Jamming avoidance response

PF:

Peak frequency

References

  • Bartonička T, Řehák Z, Gaisler J (2007) Can pipistrelles, Pipistrellus pipistrellus (Schreber, 1774) and Pipistrellus pygmaeus (Leach, 1825), foraging in a group, change parameters of their signals? J Zool 272:194–201

    Article  Google Scholar 

  • Bates ME, Stamper SA, Simmons JA (2008) Jamming avoidance response of big brown bats in target detection. J Exp Biol 211:106–113

    Article  PubMed  Google Scholar 

  • Biscardi S, Orprecio J, Fenton MB, Tsoar A, Ratcliffe JM (2004) Data, sample sizes and statistics affect the recognition of species of bats by their echolocation calls. Acta Chiropterol 6:347–363

    Article  Google Scholar 

  • Bogdanowicz W (1994) Myotis daubentonii. Mamm Species 475:1–9

    Article  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. University of Chicago, Chicago

    Google Scholar 

  • Brinkløv S, Jakobsen L, Ratcliffe JM, Kalko EKV, Surlykke A (2011) Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). J Acoust Soc Am 129:427–435

    Article  PubMed  Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979

    Article  Google Scholar 

  • Chiu C, Xian W, Moss CF (2008) Flying in silence: echolocating bats cease vocalizing to avoid sonar jamming. Proc Natl Acad Sci USA 105:13116–13121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiu C, Xian W, Moss CF (2009) Adaptive echolocation behaviour in bats for the analysis of auditory scenes. J Exp Biol 212:1392–1404

    Article  PubMed Central  PubMed  Google Scholar 

  • Dietz C, von Helversen O, Nill D (2009) Bats of Britain, Europe and northwest Africa. A and C Black, London

    Google Scholar 

  • Fenton MB (1990) The foraging behaviour and ecology of animal-eating bats. Can J Zool 68:411–422

    Article  Google Scholar 

  • Gillam EH (2007) Eavesdropping by bats on the feeding buzzes of conspecifics. Can J Zool 85:795–801

    Article  Google Scholar 

  • Habersetzer J (1981) Adaptive echolocation sounds in the bat Rhinopoma hardwickei: a field study. J Comp Physiol A 144:559–566

    Article  Google Scholar 

  • Hartley DJ (1992) Stabilization of perceived echo amplitudes in echolocating bats. II. The acoustic behavior of the big brown bat, Eptesicus fuscus, when tracking moving prey. J Acoust Soc Am 91:1132–1149

    Google Scholar 

  • Hiryu S, Bates ME, Simmons JA, Riquimaroux H (2010) FM echolocating bats shift frequencies to avoid broadcast–echo ambiguity in clutter. Proc Natl Acad Sci USA 107:7048–7053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Ibáñez C, Juste J, Lopez-Wilchis R, Nunez-Garduno A (2004) Habitat variation and jamming avoidance in echolocation calls of the sac-winged bat (Balantiopteryx plicata). J Mamm 85:38–42

    Article  Google Scholar 

  • Jakobsen L, Surlykke A (2010) Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit. Proc Natl Acad Sci USA 107:13930–13935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakobsen L, Ratcliffe JM, Surlykke A (2013) Convergent acoustic field of view in echolocating bats. Nature 493:93–96

    Article  PubMed  Google Scholar 

  • Kalko EKV, Schnitzler H-U (1989) The echolocation and hunting behavior of Daubenton’s bat, Myotis daubentonii. Behav Ecol Sociobiol 24:225–238

    Article  Google Scholar 

  • Kick SA, Simmons JA (1984) Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4:2725–2737

    CAS  PubMed  Google Scholar 

  • Miller LA, Degn HJ (1981) The acoustic behaviour of four species of vespertilionid bats studied in the field. J Comp Physiol 142:67–74

    Article  Google Scholar 

  • Moss CF, Schnitzler H-U (1995) Behavioral studies of auditory information processing. In: Fay RR, Popper AN (eds) Hearing by bats. Springer, New York, pp 87–145

    Chapter  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans R Soc Lond B 316:335–427

    Article  Google Scholar 

  • Nørum U, Brinkløv S, Surlykke A (2012) New model for gain control of signal intensity to object distance in echolocating bats. J Exp Biol 215:3045–3054

    Article  PubMed  Google Scholar 

  • Obrist MK (1995) Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design. Behav Ecol Sociobiol 36:207–219

    Article  Google Scholar 

  • Ratcliffe JM, Dawson JW (2003) Behavioural flexibility: the little brown bat, Myotis lucifugus, and the northern long-eared bat, M. septentrionalis, both glean and hawk prey. Anim Behav 66:847–856

    Article  Google Scholar 

  • Ratcliffe JM, ter Hofstede HM, Avila-Flores R, Fenton MB, McCracken G, Biscardi S, Blasko J, Gillam E, Orpecio J, Spanjer G (2004) Conspecifics influence call design in the Brazilian free-tailed bat, Tadarida brasiliensis. Can J Zool 82:966–971

    Article  Google Scholar 

  • Ratcliffe JM, Jakobsen L, Kalko EKV, Surlykke A (2011) Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata. J Comp Physiol A 197:413–423

    Article  Google Scholar 

  • Ratcliffe JM, Elemans CPH, Jakobsen L, Surlykke A (2013) How the bat got its buzz. Biol Lett 9:20121031

    Article  PubMed Central  PubMed  Google Scholar 

  • Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557–569

    Article  Google Scholar 

  • Siemers BM, Schnitzler H-U (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    Article  CAS  PubMed  Google Scholar 

  • Siemers BM, Stilz P, Schnitzler H-U (2001) The acoustic advantage of hunting at low heights above water: behavioural experiments on the European ‘trawling’ bats Myotis capaccinii, M. dasycneme and M. daubentonii. J Exp Biol 204:3843–3854

    CAS  PubMed  Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, vol 1, 3rd edn. Johns Hopkins University Press, Baltimore, pp 312–529

    Google Scholar 

  • Surlykke A, Moss CF (2000) Echolocation behaviour of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am 108:2419–2429

    Article  CAS  PubMed  Google Scholar 

  • Surlykke A, Pedersen SB, Jakobsen L (2009) Echolocating bats emit a highly directional sonar sound beam in the field. Proc R Soc Lond B 276:853–860

    Article  Google Scholar 

  • Ulanovsky N, Moss CF (2008) What the bat’s voice tells the bat’s brain. Proc Natl Acad Sci USA 105:8491–8498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Fenton MB, Tsoar A, Korine C (2004) Dynamics of jamming avoidance in echolocating bats. Proc R Soc Lond B 271:1467–1475

    Article  Google Scholar 

Download references

Acknowledgments

We thank L. Jakobsen and B. Charlton for Matlab scripts. We thank S. Brinkløv, J. Christensen-Dalsgaard, A. Denzinger, B. Fenton, A. Surlykke for comments on the manuscript. L. Faber and T. Bojesen assisted with experiments. This study was funded by Danish Natural Sciences Research Council (FNU) grants to JMR and adhered to the legal requirements of Denmark and all institutional guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Ratcliffe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fawcett, K., Ratcliffe, J.M. Clutter and conspecifics: a comparison of their influence on echolocation and flight behaviour in Daubenton’s bat, Myotis daubentonii . J Comp Physiol A 201, 295–304 (2015). https://doi.org/10.1007/s00359-014-0977-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0977-0

Keywords

Navigation