Skip to main content
Log in

Pectoral sound generation in the blue catfish Ictalurus furcatus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Catfishes produce pectoral stridulatory sounds by “jerk” movements that rub ridges on the dorsal process against the cleithrum. We recorded sound synchronized with high-speed video to investigate the hypothesis that blue catfish Ictalurus furcatus produce sounds by a slip–stick mechanism, previously described only in invertebrates. Blue catfish produce a variably paced series of sound pulses during abduction sweeps (pulsers) although some individuals (sliders) form longer duration sound units (slides) interspersed with pulses. Typical pulser sounds are evoked by short 1–2 ms movements with a rotation of 2°–3°. Jerks excite sounds that increase in amplitude after motion stops, suggesting constructive interference, which decays before the next jerk. Longer contact of the ridges produces a more steady-state sound in slides. Pulse pattern during stridulation is determined by pauses without movement: the spine moves during about 14 % of the abduction sweep in pulsers (~45 % in sliders) although movement appears continuous to the human eye. Spine rotation parameters do not predict pulse amplitude, but amplitude correlates with pause duration suggesting that force between the dorsal process and cleithrum increases with longer pauses. Sound production, stimulated by a series of rapid movements that set the pectoral girdle into resonance, is caused by a slip–stick mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3082

    Article  PubMed  Google Scholar 

  • Azizi E, Brainerd EL, Roberts TL (2008) Variable gearing in pennate muscles. Proc Natl Acad Sci 105:1750

    Article  Google Scholar 

  • Bennett-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Comstock, Cornell University Press, Ithaca, pp 227–261

    Google Scholar 

  • Bosher BT, Newton SH, Fine ML (2006) The spines of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: an experimental study. Ethology 112:188–195

    Article  Google Scholar 

  • Brousseau RA (1978) The pectoral anatomy of selected Ostariophysi 2. The Cypriniformes and Siluriformes. J Morphol 150:79–116

    Article  Google Scholar 

  • Burkenroad MD (1931) Notes on the sound-producing marine fishes of Louisiana. Copeia 1931:20–28

    Article  Google Scholar 

  • Colson DJ, Patek SN, Brainerd EL, Lewis SM (1998) Sound production during feeding in Hippocampus seahorses (Syngnathidae). Environ Biol Fish 51:221–229

    Article  Google Scholar 

  • Diogo R, Oliveira C, Chardon M (2001) On the osteology and myology of catfish pectoral girdle, with a reflection on catfish (Teleostei: Siluriformes) plesiomorphies. J Morphol 249:100–125

    Article  CAS  PubMed  Google Scholar 

  • Duvall AD (2007) A comparison of the pectoral spines in Virginia catfishes. M.S. Virginia Commonwealth University, USA

    Google Scholar 

  • Ferraris C (2007) Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes) and catalogue of siluriform primacy types. Zootaxa 1418:1–628

    Google Scholar 

  • Fine ML, Ladich F (2003) Sound production, spine locking and related adaptations. In: Kapoor BG, Arratia G, Chardon M, Diogo M (eds) Catfishes. Science Publishers, Inc, Enfield, pp 248–290

    Google Scholar 

  • Fine ML, McElroy D, Rafi J, King CB, Loesser KE, Newton S (1996) Lateralization of pectoral sound production in the channel catfish. Physiol Behav 60:753–757

    Article  CAS  PubMed  Google Scholar 

  • Fine ML, Friel JP, McElroy D, King CB, Loesser KE, Newton S (1997) Pectoral spine locking and sound production in the channel catfish (Ictalurus punctatus). Copeia 1997:777–790

    Article  Google Scholar 

  • Fine ML, King CB, Friel JP, Loesser KE, Newton S (1999) Sound production and locking of the pectoral spine of the channel catfish. Am Fish Soc Symp 24:105–114

    Google Scholar 

  • Fine ML, Malloy KL, King CB, Mitchell SL, Cameron TM (2001) Movement and sound generation by the toadfish swimbladder. J Comp Physiol 187A:371–379

    Article  Google Scholar 

  • Fine ML, Schrinel J, Cameron TM (2004) The effect of loading on disturbance sounds of the Atlantic croaker Micropogonias undulatu s: air vs. water. J Acoust Soc Am 116:1271–1275

    Article  PubMed  Google Scholar 

  • Fine ML, Lahiri S, Sullivan ADH, May M, Newton SH, Sismour EN (2014) Reduction of the pectoral spine and girdle in domesticated Channel catfish is likely caused by changes in selection pressure. Evolution 68:2101–2107

    Google Scholar 

  • Ghahramani ZN, Mohajer Y, Fine ML (2014) Developmental variation in sound production in water and air in the blue catfish Ictalurus furcatus. J Exp Biol 217:4244–4251

    Article  PubMed  Google Scholar 

  • Greenlee RS, Lim CN (2011) Searching for equilibrium: population parameters and variable recruitment in introduced blue catfish populations in four Virginia tidal river systems. In: Michaeletz PH, Travnichek VH (eds) Conservation, ecology and management of catfish: the second international symposium. Symposium 77. Amer Fish Soc, Bethesda, pp 349–367

    Google Scholar 

  • Heyd A, Pfeiffer W (2000) Über die Lauterzeugung der Welse (Siluroidei, Ostariophysi, Teleostei) und ihren Zusammenhang mit der Phylogenese und der Schreckreaktion. Rev Suisse Zool 107:165–211

    Google Scholar 

  • Hubbs CL, Hibbard CW (1951) Ictalurus lambda, a new catfish, based on a pectoral spine from the lower Pliocene of Kansas. Copeia 1951:8–14

    Article  Google Scholar 

  • Kaatz IM, Stewart DJ, Rice AN, Lobel PS (2010) Differences in pectoral fin spine morphology between vocal and silent clades of catfishes (order Siluriformes): ecomorphological implications. Curr Zool 56:73–89

    Google Scholar 

  • Ladich F (1997) Comparative analysis of swimbladder (drumming) and pectoral (stridulation) sounds in three families of catfishes. Bioacoustics 8:185–208

    Article  Google Scholar 

  • Ladich F, Fine ML (1992) Localization of pectoral fin motoneurons (sonic and hovering) in the croaking gourami Trichopsis vittatus. Brain Behav Evol 39:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ladich F, Fine ML (2006) Sound-generating mechanisms in fishes: a unique diversity in vertebrates. In: Ladich F, Colin SP, Moller P, Kapoor BG (eds) Communication in fishes. Science Publishers, Enfield, pp 3–43

    Google Scholar 

  • Lechner W, Wysocki LE, Ladich F (2010) Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni. BMC Biol 8:1–12

    Article  Google Scholar 

  • Miano JP, Loesser-Casey KE, Fine ML (2013) Description and scaling of pectoral muscles in ictalurid catfishes. J Morphol 274:467–477

    Article  PubMed  Google Scholar 

  • Mok HK, Parmentier E, Chiu KH, Tsai KE, Chiu PH, Fine ML (2011) An intermediate in the evolution of superfast sonic muscles. Front Zool 8:1–8

    Article  Google Scholar 

  • Parmentier E, Lagardère JP, Braquegnier JB, Vandewalle P, Fine ML (2006) Sound production mechanism in carapid fish: first example with a slow sonic muscle. J Exp Biol 209:2952–2960

    Article  PubMed  Google Scholar 

  • Parmentier E, Colleye O, Fine ML, Frederich B, Vandewalle P, Herrel A (2007) Sound production in the clownfish Amphiprion clarkii. Science 316:1006

    Article  CAS  PubMed  Google Scholar 

  • Parmentier E, Fabri G, Kaatz I, Decloux N, Planes S, Vanderwalle P (2010) Functional study of the pectoral spine stridulation mechanism in different mochokid catfishes. J Exp Biol 213:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Parmentier E, Tock J, Falguière JC, Beauchaud M (2014) Sound production in Sciaenops ocellatus: preliminary study for the development of acoustic cues in aquaculture. Aquaculture 432:204–211

    Article  Google Scholar 

  • Patek SN (2001) Spiny lobsters stick and slip to make sound. Nature 411:153–154

    Article  CAS  PubMed  Google Scholar 

  • Patek SN (2002) Squeaking with a sliding joint: mechanics and motor control of sound production in palinurid lobsters. J Exp Biol 205:2375–2385

    PubMed  Google Scholar 

  • Schedin S, Gren PO, Rossing TD (1998) Transient wave response of a cymbal using double-pulsed TV holography. J Acoust Soc Am 103:1217–1220

    Article  Google Scholar 

  • Schlosser RW, Fabrizio MC, Latour RJ et al (2011) Ecological role of blue catfish in Chesapeake Bay communities and implications for management. In: Michaeletz PH, Travnichek VH (eds) Conservation, ecology and management of catfish: the second international symposium. American Fisheries Society, Bethesda. Am Fish Soc Symp 77:369–382

  • Sismour EN, Nellis SC, Newton SH, Mays D, Fine ML (2013) An experimental study of consumption of channel catfish Ictalurus punctatus by largemouth bass Micropterus salmoides when alternative prey are available. Copeia 2013:277–283

    Article  Google Scholar 

  • Tavolga WN (1971) Sound production and detection. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, New York, pp 135–205

    Google Scholar 

  • Tellechea JS, Teixeria-deMello F, Gonzales-Bergonzoni I, Vidal N (2011) Sound production and pectoral spine locking in a neotropical catfish (Iheringichthys labrosus, Pimelodidae). Neotrop Ichthyol 9:889–894

    Article  Google Scholar 

  • Winn HE (1964) The biological significance of fish sounds. In: Tavolga WN (ed) Marine bio-acoustics. Pergamon Press, New York, pp 213–231

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Gary Tepper, Virginia Commonwealth University Mechanical Engineering, for the high-speed camera, Tim Cameron for discussions on acoustics and Heba Ali for the drawing of the catfish pectoral spine and cleithrum. David Hoppler and Matt Balazik provided catfish. Work was conducted under Institutional Animal Care and Use Protocol AD20216. Contribution 52 from the Rice Center of Virginia Commonwealth University. ZNG was supported by a graduate student award from the Rice Center of Virginia Commonwealth University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Fine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 1098 kb)

Supplementary material 2 (WMV 1002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohajer, Y., Ghahramani, Z. & Fine, M.L. Pectoral sound generation in the blue catfish Ictalurus furcatus . J Comp Physiol A 201, 305–315 (2015). https://doi.org/10.1007/s00359-014-0970-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0970-7

Keywords

Navigation