Skip to main content
Log in

Physiological basis of phototaxis to near-infrared light in Nephotettix cincticeps

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In a previous study of the phototaxis of green rice leafhoppers, Nephotettix cincticeps (Hemiptera, Cicadellidae), we found positive responses to 735 nm light. Here, we investigated the mechanism underlying this sensitivity to near-infrared light. We first measured the action spectrum using a Y-maze with monochromatic lights from 480 to 740 nm. We thus found that the action spectrum peaks at 520 nm in the tested wavelength range, but that a significant effect is still observed at 740 nm, albeit with a sensitivity 5 log units lower than the peak. Second, we measured the spectral sensitivity of the eye, and found that the sensitivity in the long-wavelength region parallels the behaviorally determined action spectrum. We further identified mRNAs encoding opsins of ultraviolet, blue, and green-absorbing visual pigments, and localized the mRNAs in the ommatidia by in situ hybridization. The electrophysiology, molecular biology and the anatomy of the eye together indicate that the eyes of N. cincticeps do not contain true “red” receptors, but rather that the behavioral response to near-infrared light is mediated by the tail sensitivity of the green receptors in the long-wavelength region of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arikawa K, Inokuma K, Eguchi E (1987a) Pentachromatic visual system in a butterfly. Naturwissenschaften 74:297–298

    Article  Google Scholar 

  • Arikawa K, Kawamata K, Suzuki T, Eguchi E (1987b) Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus. J Comp Physiol A 161:161–174

    Article  CAS  PubMed  Google Scholar 

  • Arikawa K, Scholten DGW, Kinoshita M, Stavenga DG (1999) Tuning of photoreceptor spectral sensitivities by red and yellow pigments in the butterfly Papilio xuthus. Zool Sci 16:17–24

    Article  Google Scholar 

  • Arikawa K, Pirih P, Stavenga DG (2009) Rhabdom constriction enhances filtering by the red screening pigment in the eye of the Eastern Pale Clouded yellow butterfly, Colias erate (Pieridae). J Exp Biol 212:2057–2064

    Article  PubMed  Google Scholar 

  • Armett-Kibel C, Meinertzhagen IA, Dowling JE (1977) Cellular and synaptic organization in the lamina of the dragon-fly Sympetrum rubicundulum. Proc R Soc B 196:385–413

    Article  Google Scholar 

  • Autrum H (1968) Colour vision in man and animals. Naturwissenschaften 55:10–18

    Article  CAS  PubMed  Google Scholar 

  • Autrum H, von Zwehl V (1964) Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48:357–384

    Article  Google Scholar 

  • Bernard GD (1979) Red-absorbing visual pigment of butterflies. Science 203:1125–1127

    Article  CAS  PubMed  Google Scholar 

  • Bernard GD, Miller WH (1970) What does antenna engineering have to do with insect eyes? IEEE Student J 8:2–8

    Google Scholar 

  • Bertholf LM (1931a) The distribution of stimulative efficiency in the ultraviolet spectrum for the honeybee. J Agric Res 43:703–713

    Google Scholar 

  • Bertholf LM (1931b) Reactions of the honeybee to light. J Agric Res 42:379–419

    Google Scholar 

  • Bertholf LM (1932) The extent of the spectrum for Drosophila and the distribution of stimulative efficiency in it. Z Vergl Physiol 18:32–64

    Google Scholar 

  • Briscoe AD (2000) Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol 51:110–121

    CAS  PubMed  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  CAS  PubMed  Google Scholar 

  • Briscoe AD, Bernard GD, Szeto AS, Nagy LM, White RH (2003) Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification and localization of UV- blue- and green-sensitive rhodopsin encoding mRNA in the retina of Vanessa cardui. J Comp Neurol 458:334–349

    Article  CAS  PubMed  Google Scholar 

  • Bruckmoser P (1968) Die spektrale Empfindlichkeit einzelner Sehzellen des Rückenschwimmers Notonecta glauca L. (Heteroptera). Z vergl Physiol 59:187–204

    Google Scholar 

  • Eguchi E, Watanabe K, Hariyama T, Yamamoto K (1982) A comparison of electrophysiologically determined spectral responses in 35 species of lepidoptera. J Insect Physiol 28:675–682

    Article  Google Scholar 

  • Franceschini N, Kirschfeld K, Minke B (1981) Fluorescence of photoreceptor cells observed in vivo. Science 213:1264–1267

    Article  CAS  PubMed  Google Scholar 

  • Friedrich M, Wood EJ, Wu M (2011) Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J Exp Zool B 316:484–499

    Article  CAS  Google Scholar 

  • Frisch KV (1914) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol 37:1–238

    Google Scholar 

  • Goldsmith TH (1961) The color vision of insects. In: McElroy WD, Glass B (eds) A symposium on light and life. The Johns Hopkins Press, Baltimore, pp 771–794

    Google Scholar 

  • Goldsmith TH (1965) Do flies have a red receptor? J Gen Physiol 49:265–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    Article  CAS  PubMed  Google Scholar 

  • Green CH (1985) A comparison of phototactic responses to red and green light in Glossina morsitans morsitans and Musca domestica. Physiol Entomol 10:165–172

    Article  Google Scholar 

  • Griffin DR, Hubbard R, Wald G (1947) The sensitivity of the human eye to infra-red radiation. J Opt Soc Am 37:546–553

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg, New York, Toronto, pp 1–79

    Chapter  Google Scholar 

  • Henze M, Lind O, Kohler M, Kelber A (2013) Seeing and (not) being seen: sensory ecology of the blue-tailed damselfly Ishnura elegans. In: front physiol conference abstract: International Conference on invertebrate vision, Bäkaskog Castle, Sweden, 2013, p 90. doi:10.3389/conf.fphys.2013.25.00068

  • Hollingsworth JP, Wright RL, Lindquist DA (1964) Spectral response characteristics of the boll weevil. J Econ Entomol 57:38–41

    Google Scholar 

  • Horridge G, Barnard P (1965) Movement of palisade in locust retinula cells when illuminated. Q J Microsc Sci 3:131–136

    Google Scholar 

  • Hu K, Stark W (1977) Specific receptor input into spectral preference in Drosophila. J Comp Physiol 121:241–252

    Article  Google Scholar 

  • Ilse D (1928) Über den Farbensinn der Tagfalter. Z vergl Physiol 8:658–691

    Article  Google Scholar 

  • Ilse D (1937) New observations on responses to colours in egg-laying butterflies. Nature 140:544–545

    Article  Google Scholar 

  • Kelber A (2006) Invertebrate colour vision. In: Warrant E, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 250–290

    Google Scholar 

  • Kelber A, Henze Miriam J (2013) Colour vision: parallel pathways intersect in Drosophila. Curr Biol 23:R1043–R1045

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto J, Sakamoto K, Ozaki K, Mishina Y, Arikawa K (1998) Two visual pigments in a single photoreceptor cell: identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. J Exp Biol 201:1255–1261

    CAS  PubMed  Google Scholar 

  • Lamb T (1995) Photoreceptor spectral sensitivities: common shape in the long-wavelength region. Vision Res 35:3083–3091

    Article  CAS  PubMed  Google Scholar 

  • Langer H, Hamann B, Meinecke CC (1979) Tetrachromatic visual system in the moth Spodoptera exempta (Insecta: Noctuidae). J Comp Physiol A 129:235–239

    Article  Google Scholar 

  • Martinez-Harms J, Vorobyev M, Schorn J, Shmida A, Keasar T, Homberg U, Schmeling F, Menzel R (2012) Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. J Comp Physiol A 198:451–463

    Article  CAS  Google Scholar 

  • Matic T (1983) Electrical inhibition in the retina of the butterfly Papilio. I. Four spectral types of photoreceptors. J Comp Physiol A 152:169–182

    Article  Google Scholar 

  • Matsumoto Y, Wakakuwa M, Yukuhiro F, Arikawa K, Noda H (2014) The attraction to different wavelength light emitting diodes (LEDs), the compound eye structure and opsin genes in Nilaparvata lugens. Jpn J Appl Entomol Zool (in press)

  • Matsushita M, Awata H, Wakakuwa M, Takemura S, Arikawa K (2012) Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis. Proc R Soc B 279:3482–3490

    Article  PubMed Central  PubMed  Google Scholar 

  • Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Invertebrate photoreceptors. Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg, New York, pp 503–580

  • Nilsson D-E, Land MF, Howard J (1988) Optics of the butterfly eye. J Comp Physiol A 162:341–366

    Article  Google Scholar 

  • Nowel M, Shelton PJ (1981) A Golgi-electron-microscopical study of the structure and development of the lamina ganglionaris of the locust optic lobe. Cell Tissue Res 216:377–401

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Kinoshita M, Stavenga DG, Arikawa K (2013) Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate. J Exp Biol 216:1916–1923

    Article  CAS  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, Desouza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  CAS  PubMed  Google Scholar 

  • Reisenman CE, Lazzari C (2006) Spectral sensitivity of the photonegative reaction of the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae). J Comp Physiol A 192:39–44

    Article  Google Scholar 

  • Ribi WA (1978) A unique hymenopteran compound eye. The retina fine structure of the digger wasp Sphex cognatus Smith (Hymenoptera, Sphecidae). Zool Jb Anat Bd 100:299–342

    Google Scholar 

  • Schnaitmann C, Garbers C, Wachtler T, Tanimoto H (2013) Color discrimination with broadband photoreceptors. Curr Biol 23:2375–2382

    Article  CAS  PubMed  Google Scholar 

  • Schümperli RA (1973) Evidence for colour vision in Drosophila melanogaster through spontaneous phototactic choice behaviour. J Comp Physiol 86:77–94

    Article  Google Scholar 

  • Schwind R, Schlecht P, Langer H (1984) Microspectrophotometric characterization and localization of three visual pigments in the compound eye of Notonecta glauca L. (Heteroptera). J Comp Physiol A 116:183–207

    Google Scholar 

  • Shimohigashi M, Tominaga Y (1991) Identification of UV, green and red receptors, and their projection to lamina in the cabbage butterfly, Pieris rapae. Cell Tissue Res 263:49–59

    Article  Google Scholar 

  • Stavenga DG (2002) Reflections on colourful ommatidia of butterfly eyes. J Exp Biol 205:1077–1085

    PubMed  Google Scholar 

  • Stavenga DG, Arikawa K (2011) Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling. J Comp Physiol A 197:373–385

    Article  Google Scholar 

  • Strausfeld NJ, Lee J-K (1991) Neuronal basis for parallel visual processing in the fly. Vis Neurosci 7:13–33

    Article  CAS  PubMed  Google Scholar 

  • Swihart SL, Gordon WC (1971) Red photoreceptor in butterflies. Nature 231:126–127

    Article  CAS  PubMed  Google Scholar 

  • Takemura S, Kinoshita M, Arikawa K (2005) Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus. J Comp Neurol 483:341–350

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Google Scholar 

  • Wakakuwa M, Stavenga DG, Kurasawa M, Arikawa K (2004) A unique visual pigment expressed in green, red and deep-red receptors in the eye of the Small White butterfly, Pieris rapae crucivora. J Exp Biol 207:2803–2810

    Article  CAS  PubMed  Google Scholar 

  • Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92:464–467

    Article  CAS  PubMed  Google Scholar 

  • Williams D (1982) Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res 225:595–617

    Article  CAS  PubMed  Google Scholar 

  • Yang EC, Osorio D (1991) Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. J Comp Physiol A 169:663–669

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Doekele Stavenga for critical reading the manuscript. This study was supported by the MAFF (Ministry of Agriculture, Forestry and Fisheries of Japan) grant no. INSECT-1101 to K.A. All experiments were conducted according to the MEXT (Ministry of Education, Culture, Sports, Science and Technology of Japan) guidelines for proper conduct of animal experiment and related activities in academic research institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Arikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakakuwa, M., Stewart, F., Matsumoto, Y. et al. Physiological basis of phototaxis to near-infrared light in Nephotettix cincticeps . J Comp Physiol A 200, 527–536 (2014). https://doi.org/10.1007/s00359-014-0892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0892-4

Keywords

Navigation