Skip to main content
Log in

Ample active acoustic space of a frog from the South American temperate forest

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The efficiency of acoustic communication depends on the power generated by the sound source, the attributes of the environment across which signals propagate, the environmental noise and the sensitivity of the intended receivers. Eupsophus emiliopugini, an anuran from the temperate austral forest communicates by means of an advertisement call of moderate intensity within the range for anurans. To estimate the range over which these frogs communicate effectively, we conducted measurements of call sound levels and of auditory thresholds to pure tones and to synthetic conspecific calls. The results show that E. emiliopugini produces advertisement calls of about 84 dB SPL at 0.25 m from the caller. The signals are affected by attenuation as they propagate, reaching average values of about 47 dB SPL at 8 m from the sound source. Midbrain multi-unit recordings show quite sensitive audiograms within the anuran range, with thresholds of about 44 dB SPL for synthetic imitations of conspecific calls, which would allow communication at distances beyond 8 m. This is an extended range as compared to E. calcaratus, a related syntopic species for which a previous study has shown to be restricted to active acoustic spaces shorter than 2 m. The comparison reveals divergent strategies for related taxa communicating amid the same environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SPL:

Sound pressure level

RMS:

Root mean square

BTL:

Best threshold of the low-frequency region

BTH:

Best threshold of the high-frequency region

CFH:

Center frequency of the high-frequency region

References

  • Amézquita A, Flechas SV, Lima AP, Gasser H, Hödl W (2011) Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proc Nat Acad Sci 108:17058–17063

    Article  PubMed  Google Scholar 

  • Boatright-Horowitz SI, Horowitz SS, Simmons AM (2000) Patterns of vocal interactions in a bullfrog (Rana catesbeiana) chorus: shared preferential responding to far neighbors. Ethology 106:701–712

    Article  Google Scholar 

  • Boistel R, Aubin T, Cloetens P, Langer M, Gillet B, Josset P, Pollet N, Herrel A (2011) Whispering to the deaf: communication by a frog without external vocal sac or tympanum in noisy environments. PLoS ONE 6:e22080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bosch J, De la Riva I (2004) Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Can J Zool 82:880–888

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Brenowitz EA (1982) The active space of red-winged blackbird song. J Comp Physiol A 147:511–522

    Article  Google Scholar 

  • Brenowitz EA (1989) Neighbor call amplitude influences aggressive behavior and intermale spacing in choruses of the Pacific treefrog (Hyla regilla). Ethology 83:69–79

    Article  Google Scholar 

  • Brumm H (2002) Sound radiation patterns in Nightingale (Luscinia megarhynchos) songs. J Ornithol 143:468–471

    Article  Google Scholar 

  • Brumm H, Naguib M (2009) Environmental acoustics and the evolution of bird song. Adv Stud Behav 40:1–33

    Article  Google Scholar 

  • Correa C, Veloso A, Iturra P, Méndez M-A (2006) Phylogenetic relationships of Chilean leptodactylids: a molecular approach based on mitochondrial genes 12S and 16S. Rev Chil Hist Nat 79:435–450

    Article  Google Scholar 

  • Dabelsteen T, McGregor PK, Lampe HM, Langmore NE, Holland J (1998) Quiet song in song birds: an overlooked phenomenon. Bioacoustics 9:89–105

    Article  Google Scholar 

  • Duellman WE, Pyles RA (1983) Acoustic resource partitioning in anuran communities. Copeia 1983:639–649

    Article  Google Scholar 

  • Dyson ML, Passmore NI (1992) Inter-male spacing and aggression in African Painted Reed Frogs, Hyperolius marmoratus. Ethology 91:237–247

    Article  Google Scholar 

  • Feng AS, Narins PM, Xu CH, Lin WY, Yu ZL, Qiu Q, Xu ZM, Shen JX (2006) Ultrasonic communication in frogs. Nature 440:333–336

    Article  CAS  PubMed  Google Scholar 

  • Formas JR (1985) The voices and relationships of the Chilean frogs Eupsophus migueli ad E. calcaratus (Amphibia: Anura: Leptodactylidae). Proc Biol Soc Wash 98:411–415

    Google Scholar 

  • Formas JR, Brieva L (1994) Advertisement calls and relationships of the Chilean frogs E. contulmoensis and E. insularis (Amphibia: Anura: Leptodactylidae). Proc Biol Soc Wash 107:391–397

    Google Scholar 

  • García-Rutledge EJ, Narins PM (2001) Shared acoustic resources in an old World frog community. Herpetologica 57:104–116

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. The University of Chicago Press, Chicago

    Google Scholar 

  • Gerhardt HC, Diekamp BM, Ptacek M (1989) Inter-male spacing in choruses of the sprig peeper, Pseudacris (Hyla) crucifer. Anim Behav 38:1012–1024

    Article  Google Scholar 

  • Hassal JR, Zaveri K (1988) Acoustic noise measurements. Larsen, Glostrup

    Google Scholar 

  • Hödl W (1977) Call differences and calling site segregation in anuran species from central Amazonian floating meadows. Oecologia 28:351–363

    Article  Google Scholar 

  • Hof D, Hazlett N (2010) Low-amplitude song predicts attack in a North American wood warbler. Anim Behav 80:821–828

    Article  Google Scholar 

  • Kime NM, Turner WR, Ryan MJ (2000) The transmission of advertisement calls in Central American frogs. Behav Ecol 11:71–83

    Article  Google Scholar 

  • Márquez R, Penna M, Marques P, do Amaral JPS (2005) The advertisement calls of Eupsophus calcaratus and E. roseus (Amphibia, Anura, Leptodactylidae): a quantitative comparison. Herpetol J 15:257–263

    Google Scholar 

  • Michelsen A, Elsner N (1999) Sound emission and the acoustic far field of a singing acridid grasshopper (Omocestus viridus L.). J Exp Biol 202:1571–1577

    PubMed  Google Scholar 

  • Michelsen A, Fonseca P (2000) Spherical sound radiation patterns of singing grass cicadas, Tympanistalna gastrica. J Comp Physiol A 186:163–168

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Gómez FN, Sueur J, Soto-Gamboa M, Penna M (2013) Female frog auditory sensitivity, male calls, and background noise: potential influences on the evolution of a peculiar matched filter. Biol J Linn Soc 110:814–827

    Google Scholar 

  • Narins PM, Hurley DD (1982) The relationship between call intensity and function in the Puerto Rican coqui (Anura: Leptodactylidae). Herpetologica 38:287–295

    Google Scholar 

  • Opazo D, Velásquez N, Veloso A, Penna M (2009) Frequency-modulated vocalizations in Eupsophus queulensis (Anura: Cycloramphidae). J Herpetol 43:657–664

    Article  Google Scholar 

  • Patricelli GL, Dantzker MS, Bradbury JW (2007) Differences in acoustic directionality among vocalizations of the male red-winged blackbird (Agelaius phoeniceus) are related to function in communication. Behav Ecol Sociobiol 61:1099–1110

    Article  Google Scholar 

  • Penna M (2004) Amplification and spectral changes of vocalizations inside burrows of the frog Eupsophus calcaratus (Leptodactylidae). J Acoust Soc Am 116:1254–1260

    Article  PubMed  Google Scholar 

  • Penna M, Hamilton-West C (2007) Susceptibility of evoked vocal responses to noise exposure in a frog of the temperate austral forest. Anim Behav 74:45–56

    Google Scholar 

  • Penna M, Quispe M (2007) Independence of evoked vocal responses from stimulus direction in burrowing frogs Eupsophus (Leptodactylidae). Ethology 113:313–323

    Article  Google Scholar 

  • Penna M, Solís R (1996) Influence of burrow acoustics on sound reception by frogs Eupsophus (Leptodactylidae). Anim Behav 51:255–263

    Google Scholar 

  • Penna M, Solís R (1998) Frog call intensities and sound propagation in the South American temperate forest region. Behav Ecol Sociobiol 42:371–381

    Article  Google Scholar 

  • Penna M, Solís R (1999) Extent and variation of enhancement of sound reception inside burrows of the frog Eupsophus emiliopugini (Leptodactylidae). Behav Ecol Sociobiol 47:94–103

    Google Scholar 

  • Penna M, Veloso A (1990) Vocal diversity in frogs of the South American temperate forest. J Herpetol 24:23–32

    Article  Google Scholar 

  • Penna M, Palazzi C, Paolinelli P, Solís R (1990) Midbrain auditory sensitivity in toads of the genus Bufo (Amphibia—Bufonidae) with different vocal repertoires. J Comp Physiol A 167:673–681

    Article  Google Scholar 

  • Penna M, Capranica RR, Somers J (1992) Hormone-induced vocal behavior and midbrain auditory responses in the green treefrog, Hyla cinerea. J Comp Physiol A 170:73–82

    Article  CAS  PubMed  Google Scholar 

  • Penna M, Pottstock H, Velásquez N (2005a) Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Anim Behav 70:639–651

    Article  Google Scholar 

  • Penna M, Narins PM, Feng A (2005b) Thresholds for evoked vocal responses of Eupsophus emiliopugini (Amphibia, Leptodactylidae). Herpetologica 61:1–8

    Article  Google Scholar 

  • Penna M, Márquez R, Crespo EG, Bosch J (2006) Nonoptimal propagation of tonal advertisement calls of midwife toads in Iberian habitats. J Acoust Soc Am 119:1227–1237

    Article  PubMed  Google Scholar 

  • Penna M, Velásquez N, Solís R (2008) Correspondence between evoked vocal responses and auditory thresholds in Pleurodema thaul (Amphibia; Leptodactylidae). J Comp Physiol A 194:361–371

    Article  Google Scholar 

  • Penna M, Llusia D, Márquez R (2012) Propagation of natural toad calls in a Mediterranean terrestrial environment. J Acoust Soc Am 132:4025–4031

    Article  PubMed  Google Scholar 

  • Penna M, Plaza A, Moreno-Gómez FN (2013) Severe constraints for sound communication in a frog from the South American temperate forest. J Comp Physiol A 199:723–733

    Article  Google Scholar 

  • Wells KD, Schwartz JJ (1982) The effect of vegetation on the propagation of calls in the neotropical frog Centrolenella fleischmanni. Herpetologica 38:449–455

    Google Scholar 

  • Wilczynski W, Brenowitz EA (1988) Acoustic cues mediate inter-male spacing in a neotropical frog. Anim Behav 36:1054–1063

    Article  Google Scholar 

  • Zimmerman BL (1983) A comparison of structural features of calls of open and forest habitat frog species in the central Amazon. Herpetologica 39:235–245

    Google Scholar 

Download references

Acknowledgments

Lucas Estrella and Juan Panza helped in the field measurements, and Matías Muñoz helped with the electrophysiological recordings. Corporación Nacional Forestal (CONAF) authorized our work in the Vicente Pérez Rosales National Park and Servicio Agrícola y Ganadero (SAG) extended permits for capture of specimens of E. emiliopugini. The procedures used comply with the bioethical regulations of the University of Chile (Protocol CBA# 061 FMUCH). Research supported by FONDECYT Grants 1960859 and 1110939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Penna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penna, M., Moreno-Gómez, F.N. Ample active acoustic space of a frog from the South American temperate forest. J Comp Physiol A 200, 171–181 (2014). https://doi.org/10.1007/s00359-013-0875-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0875-x

Keywords

Navigation