Skip to main content

Advertisement

Log in

Exploring the mammalian sensory space: co-operations and trade-offs among senses

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The evolution of a particular sensory organ is often discussed with no consideration of the roles played by other senses. Here, we treat mammalian vision, olfaction and hearing as an interconnected whole, a three-dimensional sensory space, evolving in response to ecological challenges. Until now, there has been no quantitative method for estimating how much a particular animal invests in its different senses. We propose an anatomical measure based on sensory organ sizes. Dimensions of functional importance are defined and measured, and normalized in relation to animal mass. For 119 taxonomically and ecologically diverse species, we can define the position of the species in a three-dimensional sensory space. Thus, we can ask questions related to possible trade-off vs. co-operation among senses. More generally, our method allows morphologists to identify sensory organ combinations that are characteristic of particular ecological niches. After normalization for animal size, we note that arboreal mammals tend to have larger eyes and smaller noses than terrestrial mammals. On the other hand, we observe a strong correlation between eyes and ears, indicating that co-operation between vision and hearing is a general mammalian feature. For some groups of mammals we note a correlation, and possible co-operation between olfaction and whiskers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahnelt PK, Kolb H (2000) The mammalian photoreceptor mosaic–adaptive design. Progr Retinal Eye Res 19:711–777

    CAS  Google Scholar 

  • Barlow HB (1981) The Ferrier Lecture, 1980. Critical limiting factors in the design of the eye and visual cortex. Proc R Soc Lond B 212:1–34

    PubMed  CAS  Google Scholar 

  • Barlow HB, Mollon JD (eds) (1982) The senses. Cambridge University Press, London, pp 1–490

    Google Scholar 

  • Barth FG, Giampieri-Deutsch P, Klein H-D (eds) (2012) Sensory perception: mind and matter. Springer, Wien, pp 1–404

  • Békésy G von (1960) Experiments in hearing. McGraw-Hill, New York, pp 1–745

    Google Scholar 

  • Bhatnagar KP, Kallen FC (1975) Quantitative observations on the nasal epithelia and olfactory innervation in bats. Acta Anat 91:272–282

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    PubMed  CAS  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland, pp 1–882

    Google Scholar 

  • Bruns V, Fiedler J, Kraus H-J (1983–1984) Structural diversity of the inner ear of bats. Myotis 21–22:52–61

    Google Scholar 

  • Burr D, Silva O, Cicchini GM, Banks MS, Morrone MC (2009) Temporal mechanisms of multimodal binding. Proc R Soc B 276:1761–1769

    PubMed  Google Scholar 

  • Catania KC (2005) Evolution of sensory specializations in insectivores. Anat Rec A 287A:1038–1050

    Google Scholar 

  • Catania KC, Hare JF, Campbell KL (2008) Water shrews detect movement, shape, and smell to find prey underwater. Proc Natl Acad Sci USA 105:571–576

    PubMed  CAS  Google Scholar 

  • Chandrasekaran C, Lemus L, Trubanova A, Gondan M, Ghazanfar AA (2011) Monkeys and humans share a common computation for face/voice integration. PLoS Comput Biol 7:e1002165

    PubMed  CAS  Google Scholar 

  • Dalland JI (1965) Hearing sensitivity in bats. Science 150:1185–1186

    PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London, pp 1–502

    Google Scholar 

  • Dehnhardt G, Mauck B (2008) The physics and physiology of mechanoreception. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 287–293

    Google Scholar 

  • Dusenbery DB (1992) Sensory ecology: how organisms acquire and respond to information. W.F. Freeman and Company, New York, pp 1–558

    Google Scholar 

  • Eisthen HL, Schwenk K (2008) The chemical stimulus and its detection. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 35–41

    Google Scholar 

  • Eronen J, Polly PD, Fred M, Damuth J, Frank DC, Mosbrugger V, Scheidegger C, Stenseth NC, Fortelius M (2010) Ecometrics: the traits that bind the past and present together. Integr Zool 5:88–101

    PubMed  Google Scholar 

  • Evans EF (1982) Basic physics and psychophysics of sound. In: Barlow HB, Mollon JD (eds) The Senses. Cambridge University Press, Cambridge, pp 239–250

    Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka, pp 1–621

    Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 229–263

    Google Scholar 

  • Fleischer G (1978) Evolutionary principles in the mammalian middle ear. Adv Anat Embryol Cell Biol 55:1–70

    Google Scholar 

  • Geisler CD (1998) From sound to synapse. Physiology of the mammalian ear. Oxford University Press, Oxford, pp 1–381

  • Gonzalez-Soriano J, Mayayo-Vicente S, Martinez-Sainz P, Contreras-Rodriguez J, Rodriguez-Veiga E (1997) A quantitative study of ganglion cells in the goat retina. Anat Histol Embryol 26:39–44

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1962) Approximate calculation of the dimensions of traveling-wave envelopes in four species. J Acoust Soc Am 34:1364–1369

    Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605

    PubMed  CAS  Google Scholar 

  • Gross EA, Swenberg JA, Fields S, Popp JA (1982) Comparative morphometry of the nasal cavity in rats and mice. J Anat 135:83–88

    PubMed  CAS  Google Scholar 

  • Güntherschulze J (1979) Studien zur Kenntnis der Regio olfactoria von Wild- und Hausschwein (Sus scrofa scrofa L. 1768 und Sus scrofa f. domestica). Zool Anz 202:256–279

    Google Scholar 

  • Haque NM, Vijayan V (1993) Food habits of the fishing cat Felis viverrina in Keoladeo National Park, Bharatpur, Rajasthan. J Bombay Nat Hist Soc 90:498–500

    Google Scholar 

  • Heffner R, Heffner H (1980) Hearing in the elephant. Science 208:518–520

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1992) Visual factors in sound localization in mammals. J Comp Neurol 317:219–232

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (2010) Explaining high-frequency hearing. Anat Rec 293:2080–2082

    Google Scholar 

  • Heffner H, Masterton B (1980) Hearing in Glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. J Acoust Soc Am 68:1584–1599

    Google Scholar 

  • Heffner RS, Koay G, Heffner HE (2001) Audiograms of five species of rodents: implications for the evolution of hearing and the perception of pitch. Hearing Res 157:138–152

    CAS  Google Scholar 

  • Hemilä S, Reuter T (2008) The physics and biology of olfaction and taste. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 29–33

    Google Scholar 

  • Hemilä S, Nummela S, Reuter T (1995) What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Res 85:31–44

    Google Scholar 

  • Hemilä S, Nummela S, Reuter T (2010) Anatomy and physics of the exceptional sensitivity of dolphin hearing (Odontoceti: Cetacea). J Comp Physiol A 196:165–179

    Google Scholar 

  • Henderson Z (1985) Distribution of ganglion cells in the retina of adult pigmented ferret. Brain Res 358:221–228

    PubMed  CAS  Google Scholar 

  • Henson OW Jr (1961) Some morphological and functional aspects of certain structures of the middle ear in bats and insectivores. Univ Kansas Sci Bull 42:151–255

    Google Scholar 

  • Hirsch J, Curcio CA (1989) The spatial resolution capacity of human foveal retina. Vision Res 29:1095–1101

    PubMed  CAS  Google Scholar 

  • Hodgkin AL (1964) The conduction of the nervous impulse. Liverpool University Press, Liverpool, pp 1–108

    Google Scholar 

  • Howland HC, Merola S, Basarab JR (2004) The allometry and scaling of the size of vertebrate eyes. Vision Res 44:2043–2065

    PubMed  Google Scholar 

  • Hughes A (1975) A comparison of retinal ganglion cell topography in the plains and tree kangaroo. J Physiol 244:61P–63P

    PubMed  CAS  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology. The visual system in vertebrates, vol VII/5. Springer, Berlin, pp 613–756

  • Kendall DG (1989) A survey of the statistical theory of shape. Stat Sci 4:87–120

    Google Scholar 

  • Ketten DR (2000) Cetacean ears. In: Au WWL, Popper AN, Fay RR (eds) Hearing by whales and dolphins. Springer, New York, pp 43–108

    Google Scholar 

  • Kiltie RA (2000) Scaling of visual acuity with body size in mammals and birds. Funct Ecol 14:226–234

    Google Scholar 

  • King AJ (1999) Sensory experience and the formation of a computational map of auditory space in the brain. BioEssays 21:900–911

    PubMed  CAS  Google Scholar 

  • Kolb A (1971) Licht- und elektronenmikroskopische Untersuchungen der Nasenhöhle und des Riechepithels einiger Fledermausarten. Z Säugertierk 36:202–213

    Google Scholar 

  • Kolb A (1975) Lichtmikroskopische Untersuchungen am Riechepithel des Rehes (Capreolus capreolus). Anat Anz 137:417–428

    PubMed  CAS  Google Scholar 

  • Lange S, Stalleicken J, Burda H (2004) Functional morphology of the ear in fossorial rodents, Microtus arvalis and Arvicola terrestris. J Morphol 262:770–779

    PubMed  Google Scholar 

  • Laska M, Seibt A (2002) Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. J Exp Biol 205:1633–1643

    PubMed  CAS  Google Scholar 

  • Lehmann EL, Romano JP (2005) Testing statistical hypotheses, III edn. Springer, New York, pp 1–786

    Google Scholar 

  • Liow LH, Fortelius M, Bingham E, Lintulaakso K, Mannila H, Flynn L, Stenseth NC (2008) Higher origination and extinction rates in larger mammals. Proc Natl Acad Sci USA 105:6097–6102

    PubMed  CAS  Google Scholar 

  • Liu L, Puolamäki K, Eronen JT, Ataabadi MM, Hernesniemi E, Fortelius M (2012) Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proc R Soc B 279:2793–2799

    PubMed  Google Scholar 

  • Louage DHG, van der Heijden M, Joris PX (2005) Enhanced temporal response properties of anteroventral cochlear nucleus neurons to broadband noise. J Neurosci 25:1560–1570

    PubMed  CAS  Google Scholar 

  • Manoussaki D, Chadwick RS, Ketten DR, Arruda J, Dimitriadis EK, O′Malley JT (2008) The influence of cochlear shape on low-frequency hearing. Proc Natl Acad Sci USA 105:6162–6166

    PubMed  CAS  Google Scholar 

  • Mass AM, Supin AY (1992) Peak density, size and regional distribution of ganglion cells in the retina of the fur seal Callorhinus ursinus. Brain Behav Evol 39:69–76

    PubMed  CAS  Google Scholar 

  • Mass AM, Supin AY (2000) Ganglion cells density and retinal resolution in the sea otter, Enhydra lutris. Brain Behav Evol 55:111–119

    PubMed  CAS  Google Scholar 

  • Mass AM, Supin AY (2003) Retinal topography of the harp seal Pagophilus groenlandicus. Brain Behav Evol 62:212–222

    PubMed  Google Scholar 

  • Muchlinski MN (2010) A comparative analysis of vibrissa count and infraorbital foramen area in primates and other mammals. J Hum Evol 58:447–473

    PubMed  Google Scholar 

  • Müller M, Wess F-P, Bruns V (1993) Cochlear place-frequency map in the marsupial Monodelphis domestica. Hearing Res 67:198–202

    Google Scholar 

  • Mulvaney BD, Heist HE (1970) Mapping of rabbit olfactory cells. J Anat 107:19–30

    PubMed  CAS  Google Scholar 

  • Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421

    PubMed  CAS  Google Scholar 

  • Musacchia G, Sams M, Nicol T, Kraus N (2006) Seeing speech affects acoustic information processing in the human brainstem. Exp Brain Res 168:1–10

    PubMed  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    PubMed  CAS  Google Scholar 

  • Nowak RM (1999) Walker′s mammals of the world, vol 1–2, VI edn. The Johns Hopkins University Press, Baltimore, pp 1–2015

  • Nummela S (1995) Scaling of the mammalian middle ear. Hearing Res 85:18–30

    CAS  Google Scholar 

  • Nummela S (1997) Scaling and modeling the mammalian middle ear. Comments Theor Biol 4:387–412

    Google Scholar 

  • Nummela S, Sánchez-Villagra MR (2006) Scaling of the marsupial middle ear and its functional significance. J Zool 270:256–267

    Google Scholar 

  • Nummela S, Thewissen JGM, Bajpai S, Hussain ST, Kumar K (2004) Eocene evolution of whale hearing. Nature 430:776–778

    PubMed  CAS  Google Scholar 

  • Oelschläger HA (1989) Early development of the olfactory and terminalis systems in baleen whales. Brain Behav Evol 34:171–184

    PubMed  Google Scholar 

  • Okawa H, Sampath AP, Laughlin SB, Fain GL (2008) ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol 18:1917–1921

    PubMed  CAS  Google Scholar 

  • Peichl L (1992) Topography of ganglion cells in the dog and wolf retina. J Comp Neurol 324:603–620

    PubMed  CAS  Google Scholar 

  • Peichl L (2005) Diversity of mammalian photoreceptor properties: adaptation to habitat and lifestyle? Anat Rec A 287A:1001–1012

    Google Scholar 

  • Pettigrew JD, Dreher B, Hopkins CS, McCall MJ, Brown M (1988) Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. Brain Behav Evol 32:39–56

    PubMed  CAS  Google Scholar 

  • Pettigrew JD, Bhagwandin A, Haagensen M, Manger PR (2010) Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana). Brain Behav Evol 75:251–261

    PubMed  Google Scholar 

  • Pihlström H (2008) Comparative anatomy and physiology of chemical senses in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 95–109

    Google Scholar 

  • Pihlström H, Fortelius M, Hemilä S, Forsman R, Reuter T (2005) Scaling of mammalian ethmoid bones can predict olfactory organ size and performance. Proc R Soc B 272:957–962

    PubMed  Google Scholar 

  • Plassmann W, Brändle K (1992) A functional model of the auditory system in mammals and its evolutionary implications. In: Webster WB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 637–653

    Google Scholar 

  • Pollak GD (1992) Adaptations of basic structures and mechanisms in the cochlea and central auditory pathway of the Mustache bat. In: Webster WB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 751–778

    Google Scholar 

  • Polly PD, Eronen JT, Fred M, Dietl GP, Mosbrugger V, Scheidegger C, Frank DC, Damuth J, Stenseth NC, Fortelius M (2011) History matters: ecometrics and integrative climate change biology. Proc R Soc B 278:1131–1140

    PubMed  Google Scholar 

  • Proops L, McComb K, Reby D (2009) Cross-modal individual recognition in domestic horses (Equus caballus). Proc Natl Acad Sci USA 106:947–951

    PubMed  CAS  Google Scholar 

  • Pye A (1985–1986) Analysis of some cochlear components from surface preparations in bats. Myotis 23–24:51–55

    Google Scholar 

  • Radinsky LB (1968) Evolution of somatic sensory specialization in otter brains. J Comp Neurol 134:495–506

    PubMed  CAS  Google Scholar 

  • Reiss JO, Eisthen HL (2008) Comparative anatomy and physiology of chemical senses in amphibians. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 43–63

    Google Scholar 

  • Reuter T, Peichl L (2008) Structure and function of the retina in aquatic tetrapods. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 149–172

    Google Scholar 

  • Ritland SM (1982) The allometry of the vertebrate eye. Dissertation, The University of Chicago

  • Rodieck RW (1998) The first steps in seeing. Sinauer Associates, Sunderland, pp 1–562

    Google Scholar 

  • Rosowski JJ (1992) Hearing in transitional mammals: predictions from the middle-ear anatomy and hearing capabilities. In: Webster WB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 615–631

    Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linn Soc 101:131–168

    Google Scholar 

  • Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA 97:2870–2874

    PubMed  CAS  Google Scholar 

  • Rowe TB, Eiting TP, Macrini TE, Ketcham RA (2005) Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed opossum Monodelphis domestica. J Mammal Evol 12:303–336

    Google Scholar 

  • Sams M, Aulanko R, Hämäläinen M, Hari R, Lounasmaa O, Lu S-T, Simola J (1991) Seeing speech: visual information from lip movements modifies activity in the human auditory cortex. Neurosci Lett 127:141–145

    PubMed  CAS  Google Scholar 

  • Sánchez-Villagra MR, Asher RJ (2002) Cranio-sensory adaptations in small faunivorous semiaquatic mammals, with special reference to olfaction and the trigeminal system. Mammalia 66:93–109

    Google Scholar 

  • Seyfarth RM, Cheney DL (2009) Seeing who we hear and hearing who we see. Proc Natl Acad Sci USA 106:669–670

    PubMed  CAS  Google Scholar 

  • Sigmund L, Sedláček F (1985) Morphometry of the olfactory organ and olfactory thresholds of some fatty acids in Sorex araneus. Acta Zool Fenn 173:249–251

    Google Scholar 

  • Smith CUM (2000) Biology of sensory systems. Wiley, Chichester, pp 1–445

    Google Scholar 

  • Smith TD, Rossie JB, Bhatnagar KP (2007) Evolution of the nose and nasal skeleton in primates. Evol Anthropol 16:132–146

    Google Scholar 

  • Söllner B, Kraft R (1980) Anatomie und Histologie der Nasenhöhle der Europäischen Wasserspitzmaus, Neomys fodiens (Pennant 1771), und anderer mitteleuropäischer Soriciden. Spixiana 3:251–272

    Google Scholar 

  • Spoor F, Bajpai S, Hussain ST, Kumar K, Thewissen JGM (2002) Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417:163–166

    PubMed  CAS  Google Scholar 

  • Steindorff K (1947) Deskriptive Anatomie des Auges der Wirbeltiere und des Menschen. Tabulae Biol 22:166–297

    PubMed  CAS  Google Scholar 

  • Stevens M (2013) Sensory ecology, behaviour, and evolution. Oxford University Press, Oxford, pp 1–247

    Google Scholar 

  • Stone J (1965) A quantitative analysis of the distribution of ganglion cells in the cat’s retina. J Comp Neurol 124:337–352

    PubMed  CAS  Google Scholar 

  • Stone J, Halasz P (1989) Topography of the retina in the elephant Loxodonta africana. Brain Behav Evol 34:84–95

    PubMed  CAS  Google Scholar 

  • Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Kluwer Academic Publishers, Boston, pp 1–332

    Google Scholar 

  • Suthers RA, Wallis NE (1970) Optics of the eyes of echolocation bats. Vis Res 10:1165–1173

    PubMed  CAS  Google Scholar 

  • West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101

    PubMed  CAS  Google Scholar 

  • Wilson DM, Reeder DA (eds) (2005) Mammal species of the world: a taxonomic and geographical reference, III edn. Johns Hopkins University Press, Baltimore, pp 1–2142

    Google Scholar 

Download references

Acknowledgments

For access to scientific collections we thank: Hans J. Baagøe, Mogens Andersen, and Abdi Hedayat (Natural History Museum of Denmark, Copenhagen), Per Ericson and Olavi Grönwall (Swedish Museum of Natural History, Stockholm), Gerhard Storch (Senckenberg Research Institute, Frankfurt), and Ilpo K. Hanski and Martti Hildén (Finnish Museum of Natural History, Helsinki). We are grateful to Kristian Donner and Lotta Sundström for constructive criticism and valuable suggestions on earlier versions of this manuscript. We thank the handling editor Günther Zupanc, and three anonymous reviewers for help and advice with this manuscript. This project was supported by the Academy of Finland (SN, MF), Ella and Georg Ehrnrooth Foundation (HP), Oskar Öflund Foundation (HP), ALGODAN (KP), and the Finnish Society of Sciences and Letters (TR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirpa Nummela.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nummela, S., Pihlström, H., Puolamäki, K. et al. Exploring the mammalian sensory space: co-operations and trade-offs among senses. J Comp Physiol A 199, 1077–1092 (2013). https://doi.org/10.1007/s00359-013-0846-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0846-2

Keywords

Navigation