Skip to main content
Log in

Testosterone dynamics during encounter: role of emotional factors

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

This study attempts to develop a new theory to explain the varying dynamics of testosterone levels in dominant (winners) and subordinate (losers) males, both pre- and post-encounter. The crux of our new theory consists of the following four theses: (1) the strengthening of testosterone synthesis is a result of not only the existence of challenges, but also of a positive mood before an encounter that is associated with the anticipation of a victory; (2) in situations where the anticipation of victory is present but the positive mood is absent, no rise in testosterone levels will occur; (3) testosterone acts as a “pleasure” hormone and usually releases in situations where the individual achieves or anticipates possible satisfaction; (4) an increased release of testosterone to the blood not only decreases anxiety but also elevates the mood, which increases animal’s/human’s assertiveness and consequently aggressiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins-Regan E (2005) Hormones and animal social behaviour. Princeton University Press, Princeton

    Google Scholar 

  • Aikey JL, Nyby JG, Anmuth DM, James PJ (2002) Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav 42:448–460

    Article  PubMed  CAS  Google Scholar 

  • Almeida OP, Waterreus A, Spry N, Flicker L, Martins RN (2004) One year follow-up study of the association between chemical castration, sex hormones, beta-amyloid, memory and depression in men. Psychoneuroendocrinology 29:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Archer J (2006) Testosterone and human aggression: an evaluation of the challenge hypothesis. Neurosci Biobehav Rev 30(3):319–345

    Article  PubMed  CAS  Google Scholar 

  • Barrett-Connor E, Goodman-Gruen D, Patay B (1999) Endogenous sex hormones and cognitive function in older men. J Clin Endocrinol Metab 84:3681–3685

    Article  PubMed  CAS  Google Scholar 

  • Bateup HS, Booth A, Shirtcliff EA, Granger DA (2002) Testosterone, cortisol, and women’s competition. Evol Hum Behav 23:181–192

    Article  Google Scholar 

  • Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–141

    Article  PubMed  CAS  Google Scholar 

  • Beehner JC, Bergman TJ, Cheney DL, Seyfarth RM, Whitten PL (2006) Testosterone predicts future dominance rank and mating activity among male chacma baboons. Behav Ecol Sociobiol 59:469–479

    Article  Google Scholar 

  • Bernhardt PC, Dabbs JM Jr, Fielden JA, Lutter CD (1998) Testosterone changes during vicarious experiences of winning and losing among fans at sporting events. Physiol Behav 65:59–62

    Article  PubMed  CAS  Google Scholar 

  • Bonson KR, Garrick NA, Murphy DL (1994) Evidence for a withdrawal syndrome following chronic administration of an anabolic steroid to rats. Soc Neurosci Abstr 20:1527

    Google Scholar 

  • Booth A, Shelley G, Mazur A, Tharp G, Kittok R (1989) Testosterone, and winning and losing in human competition. Horm Behav 23:556–571

    Article  PubMed  CAS  Google Scholar 

  • Bouissou MF, Vandenheede M (1996) Long-term effects of androgen treatment on fear reactions in ewes. Horm Behav 30:93–99

    Article  PubMed  CAS  Google Scholar 

  • Buchanan KL, Evans MR, Goldsmith AR, Bryant DM, Rowe LV (2001) Testosterone influences basal metabolic rate in male house sparrows: a new cost of dominance signalling? Proc R Soc B 268:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Buck CL, Barnes BM (2003) Androgen in free-living arctic ground squirrels: seasonal changes and influence of staged male–male aggressive encounters. Horm Behav 43:318–326

    Article  PubMed  CAS  Google Scholar 

  • Campbell B, O’Rourke M, Rabow M (1988) Pulsatile response of salivary testosterone and cortisol to aggressive competition in young males. In: Annual meeting of the American Association of Physical Anthropologists, Kansas City, Missouri

  • Carre JM (2009) No place like home: testosterone responses to victory depend on game location. Am J Hum Biol 21:392–394

    Article  PubMed  Google Scholar 

  • Carre J, Muir C, Belanger J, Putnam SK (2006) Pre-competition hormonal and psychological levels of elite hockey players: relationship to the ‘home advantage’. Physiol Behav 89:392–398

    Article  PubMed  CAS  Google Scholar 

  • Castro WL, Matt KS (1997) Neuroendocrine correlates of separation stress in the Siberian dwarf hamster (Phodopus sungorus). Physiol Behav 61:477–484

    Article  PubMed  CAS  Google Scholar 

  • Cavigelli SA, Pereira ME (2000) Mating season aggression and fecal testosterone levels in male ring-tailed lemurs (Lemur catta). Horm Behav 37:246–255

    Article  PubMed  CAS  Google Scholar 

  • Chichinadze K, Chichinadze N (2008) Stress-induced increase of testosterone: Contributions of social status and sympathetic reactivity. Physiol Behav 94:595–603

    Article  PubMed  CAS  Google Scholar 

  • Chichinadze K, Chichinadze N, Lazarashvili A (2009) New classification and neurobiology of aggressive behavior. In: Quin C, Tawse S (eds) Handbook of aggressive behavior research. Nova Publishers, New York, pp 183–213

    Google Scholar 

  • Chichinadze KN, Domianidze TR, Matitaishvili TTs, Chichinadze NK, Lazarashvili AG (2010) Possible relation of plasma testosterone level to aggressive behavior of male prisoners. B Exp Biol Med 149:7–9

    Article  CAS  Google Scholar 

  • Chichinadze K, Chichinadze N, Lazarashili A (2011) Hormonal and neurochemical mechanisms of aggression and a new classification of aggressive behavior. Aggress Violent Behav 16:461–471

    Article  Google Scholar 

  • Christiansen K (2001) Behavioural effects of androgen in men and women. J Endocrinol 170:39–48

    Article  PubMed  CAS  Google Scholar 

  • Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88

    Article  PubMed  CAS  Google Scholar 

  • Consten D, Lambert JG, Goos HJ (2001) Cortisol affects testicular development in male common carp, Cyprinus carpio L., but not via an effect on LH secretion. Comp Biochem Physiol B Biochem Mol Biol 129:671–677

    Article  PubMed  CAS  Google Scholar 

  • Creel S (2001) Social dominance and stress hormones. Trends Ecol Evol 16:491–497

    Article  Google Scholar 

  • Creel S, Sands JL (2003) Is social stress a consequence of subordination or a cost of dominance? In: de Waal F, Tyack P (eds) Animal social complexity. Harvard University Press, Cambridge, pp 153–179

    Google Scholar 

  • De Ridder E, Pinxten R, Eens M (2000) Experimental evidence of a testosterone-induced shift from paternal to mating behaviour in a facultatively polygynous songbird. Behav Ecol Sociobiol 49:24–30

    Article  Google Scholar 

  • Denk AG, Kempenaers B (2005) Testosterone and testes size in mallards (Anas platyrhynchos). J Ornithol 147:436–440

    Article  Google Scholar 

  • Dong Q, Salva A, Sottas CM, Niu E, Holmes M, Hardy MP (2004) Rapid glucocorticoid mediation of suppressed testosterone biosynthesis in male mice subjected to immobilization stress. J Androl 25:973–981

    PubMed  CAS  Google Scholar 

  • Ebinger M, Sievers C, Ivan D, Schneider HJ, Stalla GK (2009) Is there a neuroendocrinological rationale for testosterone as a therapeutic option in depression? J Psychopharmacol 23:841–853

    Article  PubMed  CAS  Google Scholar 

  • Esch T, Stefano GB (2004) The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinol Lett 25:235–251

    PubMed  CAS  Google Scholar 

  • Fenske M (1997) Role of cortisol in the ACTH-induced suppression of testicular steroidogenesis in guinea pigs. J Endocrinology 154:407–414

    Article  CAS  Google Scholar 

  • Fielden J, Lutter C, Dabbs J (1994) Basking in glory: testosterone changes in world cup soccer fans, Psychology Department, Georgia State University

  • Foerster K, Poesel A, Kunc H, Kempenaers B (2002) The natural plasma testosterone profile of male blue tits during the breeding season and its relation to song output. J Avian Biol 33:269–275

    Article  Google Scholar 

  • Frye C (2007) Some rewarding effects of androgens may be mediated by actions of its 5α-reduced metabolite 3α-Androstanediol. Pharmacol Biochem Behav 86:354–367

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Seliga AM (2001) Testosterone increases analgesia, anxiolysis, and cognitive performance of male rats. Cogn Affect Behav Neurosci 1:371–381

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Rhodes ME, Rosellini R, Svare B (2002) The nucleus accumbens as a site of action for rewarding properties of testosterone and its 5a-reduced metabolites. Pharmacol Biochem Behav 74:119–127

    Article  PubMed  CAS  Google Scholar 

  • Fusani L, Day LB, Canoine V, Reinemann D, Hernandez E, Schlinger BA (2007) Androgen and the elaborate courtship behavior of a tropical lekking bird. Horm Behav 51:62–68

    Article  PubMed  CAS  Google Scholar 

  • Fuxjager M, Marler C (2010) How and why the winner effect forms: influences of contest environment and species differences. Behav Ecol 21:37–45

    Article  Google Scholar 

  • Fuxjager MJ, Mast G, Becker EA, Marler CA (2009) The ‘home advantage’ is necessary for a full winner effect and changes in postencounter testosterone. Horm Behav 56:214–219

    Article  PubMed  CAS  Google Scholar 

  • Gao HB, Tong MH, Hu YQ, Guo QS, Ge R, Hardy MP (2002) Glucocorticoid induces apoptosis in rat leydig cells. Endocrinology 143:130–138

    Article  PubMed  CAS  Google Scholar 

  • Garamszegi LZ, Eens M, Hurtrez-Bousses S, Møller AP (2005) Testosterone, testes size, and mating success in birds: a comparative study. Horm Behav 47:389–409

    Article  PubMed  CAS  Google Scholar 

  • Giammanco M, Tabacchi G, Giammano S, Di Majo D, La Guardia M (2005) Testosterone and aggressiveness. Med Sci Monitor 11:RA 136–RA 145

    CAS  Google Scholar 

  • Gleason ED, Fuxjager MJ, Oyegbile TO, Marler CA (2009) Testosterone release and social context: when it occurs and why. Front Neuroendocrinol 30:460–469

    Article  PubMed  CAS  Google Scholar 

  • Goldstat R, Briganti E, Tran J, Wolfe R, Davis S (2003) Transdermal testosterone improves mood, well being and sexual function in premenopausal women. Menopause 10:390–398

    Article  PubMed  Google Scholar 

  • Gonzalez-Bono E, Salvador A, Serrano MA, Ricarte J (1999) Testosterone, cortisol, and mood in a sports team competition. Horm Behav 35:55–62

    Article  PubMed  CAS  Google Scholar 

  • Hardy MP, Sottas CM, Ge R, McKittrick CR, Tamashiro KL, McEwen BS, Haider SG, Markham CM, Blanchard RJ, Blanchard DC, Sakai RR (2002) Trends of reproductive hormones in male rats during psychosocial stress: role of glucocorticoid metabolism in behavioral dominance. Biol Reprod 67:1750–1755

    Article  PubMed  CAS  Google Scholar 

  • Hardy MP, Gao HB, Dong Q, Ge R, Wang Q, Chai WR, Feng X, Sottas C (2005) Stress hormone and male reproductive function. Cell Tissue Res 322:147–153

    Article  PubMed  CAS  Google Scholar 

  • Hermans E, Ramsey N, van Honk J (2008) Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiat 63:263–270

    Article  PubMed  CAS  Google Scholar 

  • Heuser I (2002) Depression, endocrinologically a syndrome of premature aging. Maturitas 41:S19–S23

    Article  PubMed  Google Scholar 

  • Hirschenhauser K, Oliveira RF (2006) Social modulation of androgens in male vertebrates: meta-analyses of the challenge hypothesis. Anim Behav 71:265–277

    Article  Google Scholar 

  • Isovich E, Mijnster MJ, Flugge G, Fuchs E (2000) Chronic psychosocial stress reduces the density of dopamine transporters. Eur J Neurosci 12:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Jara M, Carballada R, Esponda P (2004) Age-induced apoptosis in the male genital tract of the mouse. Reproduction 127:359–366

    Article  PubMed  CAS  Google Scholar 

  • Johnson LR, Wood RI (2001) Oral testosterone self-administration in male hamsters. Neuroendocrinology 73:285–292

    Article  PubMed  CAS  Google Scholar 

  • Josephs RA, Newman ML, Brown RP, Beer JM (2003) Status, testosterone, and human intellectual performance: stereotype threat as status concern. Psychol Sci 14:158–163

    Article  PubMed  Google Scholar 

  • Josephs RA, Sellers JG, Newman ML, Mehta PH (2006) The mismatch effect: when testosterone and status are at odds. J Pers Soc Psychol 90:999–1013

    Article  PubMed  Google Scholar 

  • Kempenaers B, Peters A, Foerster K (2008) Sources of individual variation in plasma testosterone levels. Philos Trans R Soc Lond B Biol Sci 363:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • King BE, Packard MG, Alexander GM (1999) Affective properties of intra-medial preoptic area injections of testosterone in male rats. Neurosci Lett 269:149–152

    Article  PubMed  CAS  Google Scholar 

  • Kollack-Walker S, Watson SJ, Akil H (1997) Social stress in hamsters: defeat activates specific neurocircuits within the brain. J Neurosci 17:8842–8855

    PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    Article  PubMed  CAS  Google Scholar 

  • Kraus C, Heistermann M, Kappeler PM (1999) Physiological suppression of sexual function of subordinate males: a subtle form of intrasexual competition among male sifakas (Propithesuc verreauxi). Physiol Behav 66:855–861

    Article  PubMed  CAS  Google Scholar 

  • Lai JC, Evans PD, Ng SH, Chong AM, Siu OT, Chan CL, Ho SM, Ho RT, Chan P, Chan CC (2005) Optimism, positive affectivity, and salivary cortisol. Br J Health Psychol 10:467–484

    Article  PubMed  Google Scholar 

  • Mazur A (1985) A biosocial model of status in face-to-face primate groups. Soc Forces 64:377–402

    Google Scholar 

  • Mazur A (2006) The role of testosterone in male dominance contests that turn violent. Biodemography Social Biol 53:24–29

    Article  Google Scholar 

  • Mazur A (2009) A hormonal interpretation of Collins’s micro-sociological theory of violence. J Theor Soc Behav 39:434–447

    Article  Google Scholar 

  • Mazur A, Booth A (1998) Testosterone and dominance in men. Behav Brain Sci 21:353–397

    Article  PubMed  CAS  Google Scholar 

  • Mazur A, Lamb T (1980) Testosterone, status, and mood in human males. Horm Behav 14:236–246

    Article  PubMed  CAS  Google Scholar 

  • Mazur A, Susman EJ, Edelbrock S (1997) Sex difference in testosterone response to a video game contest. Evol Hum Behav 18:317–326

    Article  Google Scholar 

  • McCaul K, Gladue B, Joppa M (1992) Winning, losing, mood, and testosterone. Horm Behav 26:486–506

    Article  PubMed  CAS  Google Scholar 

  • Mehta PH, Josephs RA (2010) Testosterone and cortisol jointly regulate dominance: Evidence for a dual-hormone hypothesis. Horm Behav 58:898–906

    Article  PubMed  CAS  Google Scholar 

  • Mehta PH, Jones AC, Josephs RA (2008) The social endocrinology of dominance: basal testosterone predicts cortisol changes and behavior following victory and defeat. J Pers Soc Psychol 94:1078–1093

    Article  PubMed  Google Scholar 

  • Mehta PH, Wuehrmann EV, Josephs RA (2009) When are low testosterone levels advantageous? The moderating role of individual versus intergroup competition. Horm Behav 56:158–162

    Article  PubMed  CAS  Google Scholar 

  • Muller MN, Wrangham RW (2004) Dominance, aggression, and testosterone in wild chimpanzees: a test of the ‘challenge hypothesis. Anim Behav 67:113–123

    Article  Google Scholar 

  • Neave N, Wolfson S (2003) Testosterone, territoriality, and the ‘home advantage’. Physiol Behav 78:269–275

    Article  PubMed  CAS  Google Scholar 

  • Newman ML, Sellers JG, Josephs RA (2005) Testosterone, cognition, and social status. Horm Behav 47:205–211

    Article  PubMed  CAS  Google Scholar 

  • Oliveira T, Gouveia MJ, Oliveira RF (2009) Testosterone responsiveness to winning and losing experiences in female soccer players. Psychoneuroendocrinology 34:1056–1064

    Article  PubMed  CAS  Google Scholar 

  • Ostner J, Kappeler P, Heistermann M (2008) Androgen and glucocorticoid levels reflect seasonally occurring social challenges in male redfronted lemurs (Eulemur fulvus rufus). Behav Ecol Sociobiol 62:627–638

    Article  PubMed  Google Scholar 

  • Ovsiukova MV, Amikishieva AV, Kudriavtseva NN, Obut TA (2003) Anxiolytic effect of dehydroepiandrosterone sulfate in male mice with high anxiety level. Zh Vyssh Nerv Deiat Im I P Pavlova 53:789–793 Russian

    PubMed  CAS  Google Scholar 

  • Oyegbile TO, Marler CA (2005) Winning fights elevates testosterone levels in California mice and enhances future ability to win fights. Horm Behav 48:259–267

    Article  PubMed  CAS  Google Scholar 

  • Packard M, Cornell A, Alexander G (1997) Rewarding affective properties of intra-nucleus accumbens injections of testosterone. Behav Neurosci 111:219–224

    Article  PubMed  CAS  Google Scholar 

  • Packard M, Schroeder J, Alexander G (1998) Expression of testosterone conditioned place preference is blocked by peripheral or intra-accumbens injection of α-flupenthixol. Horm Behav 34:39–47

    Article  PubMed  CAS  Google Scholar 

  • Rabkin JG, Wagner G, Rabkin R (1996) Treatment of depression in HIV+ men: literature review and report of an ongoing study of testosterone replacement therapy. Ann Behav Med 18:24–29

    Article  Google Scholar 

  • Raouf SA, Parker PG, Ketterson ED, Nolan V, Ziegenfus C (1997) Testosterone affects reproductive success by influencing extra-pair fertilizations in male dark-eyed juncos (Aves: Junco hyemalis). Proc R Soc B 264:1599–1603

    Article  CAS  Google Scholar 

  • Redpath SM, Mougeot F, Leckie FM, Evans SA (2006) The effects of autumn testosterone on survival and productivity in red grouse, Lagopus lagopus scoticus. Anim Behav 71:1297–1305

    Article  Google Scholar 

  • Richardson HN, Nelson AL, Ahmed EI, Parfitt DB, Romeo RD, Sisk CL (2004) Female pheromones stimulate release of luteinizing hormone and testosterone without altering GnRH mRNA in adult male Syrian hamsters (Mesocricetus auratus). Gen Comp Endocrinol 138:211–217

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Woll LM, Papalia M, Davis SR, Burger HG (2004) Androgen insufficiency in women: diagnostic and therapeutic implications. Hum Reprod Update 10:421–432

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-de-la-Torre JL, Manteca X (1999) Effects of testosterone on aggressive behaviour after social mixing in male lambs. Physiol Behav 68:109–113

    Article  PubMed  CAS  Google Scholar 

  • Salvador A, Costa R (2009) Coping with competition: neuroendocrine responses and cognitive variables. Neurosci Biobehav Rev 33:160–170

    Article  PubMed  CAS  Google Scholar 

  • Salvador A, Martinez S, Suay F, Borras JJ, Perez M, Montoro JB (1991) Relationship between testosterone and psychological mood states. II Congre s Mundial del COI de Cie`ncies de l’Esport, Barcelona

  • Salvador A, Suay F, Gonzalez-Bono E, Serrano MA (2003) Anticipatory cortisol, testosterone and psychological responses to judo competition in young men. Psychoneuroendocrinology 28:364–375

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (1991) Testicular function, social rank, and personality among wild baboons. Psychoneuroendocrinology 16:281–293

    Article  PubMed  CAS  Google Scholar 

  • Sato SM, Schulz KM, Sisk CL, Wood RI (2008) Adolescents and androgens, receptors and rewards. Horm Behav 53:647–658

    Article  PubMed  CAS  Google Scholar 

  • Schmidt PJ, Daly RE, Bloch M, Smith MJ, Danaceau MA, St Clair LS, Murphy JH, Haq N, Rubinow DR (2005) Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Arch Gen Psychiat 62:154–162

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JP, Packard MG (2000) Role of dopamine receptor subtypes in the acquisition of a testosterone conditioned place preference in rats. Neurosci Lett 282:17–20

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss OC, Rohde W (2002) Implicit power motivation predicts men’s testosterone changes and implicit learning in a contest situation. Horm Behav 41:195–202

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss OC, Wirth MM, Torges CM, Pang JS, Villacorta MA, Welsh KM (2005) Effects of implicit power motivation on men’s and women’s implicit learning and testosterone changes after social victory or defeat. J Pers Soc Psychol 88:174–188

    Article  PubMed  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    Article  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Scotti MA, Belén J, Jackson JE, Demas GE (2008) The role of androgens in the mediation of seasonal territorial aggression in male Siberian hamsters (Phodopus sungorus). Physiol Behav 95:633–640

    Article  PubMed  CAS  Google Scholar 

  • Seidman SN, Araujo AB, Roose SP, Devanand DP, Xie S, Cooper TB, McKinlay JB (2002) Low testosterone levels in elderly men with dysthymic disorder. Am J Psychiatry 159:456–459

    Article  PubMed  Google Scholar 

  • Shores MM, Kivlahan DR, Sadak TI, Li EJ, Matsumoto AM (2009) A randomized, double-blind, placebo-controlled study of testosterone treatment in hypogonadal older men with subthreshold depression (dysthymia or minor depression). J Clin Psychiatry 70:1009–1016

    Article  PubMed  CAS  Google Scholar 

  • Sidibe M, Franco LA, Fredriksson G, Madej A, Malmgren L (1992) Effects on testosterone, LH and cortisol concentrations, and on testicular ultrasonographic appearance of induced testicular degeneration in bulls. Acta Vet Scand 33:191–196

    PubMed  CAS  Google Scholar 

  • Simon NG, Lu S-F (2006) Androgens and aggression. In: Nelson RJ (ed) Biology of aggression. Oxford University Press, New York, pp 211–230

    Google Scholar 

  • Soma KK (2006) Testosterone and aggression: berthold, birds and beyond. J Neuroendocrinol 18:543–551

    Article  PubMed  CAS  Google Scholar 

  • Stefanski V (2001) Social stress in laboratory rats: behavior, immune function, and tumor metastasis. Physiol Behav 73:385–391

    Article  PubMed  CAS  Google Scholar 

  • Suay F, Salvador A, Gonzalez-Bono E, Sanchis C, Martinez M, Martinez-Sanchis S, Simon VM, Montoro JB (1999) Effects of competition and its outcome on serum testosterone, cortisol and prolactin. Psychoneuroendocrinology 24:551–566

    Article  PubMed  CAS  Google Scholar 

  • Van der Meij L, Buunk AP, Almela M, Salvador A (2010) Testosterone responses to competition: The opponent’s psychological state makes it challenging. Biol Psychol 84:330–335

    Article  PubMed  Google Scholar 

  • van Honk J, Tuiten A, Verbaten R, van den Hout M, Koppeschaar H, Thijssen J, de Haan E (1999) Correlations among salivary testosterone, mood, and selective attention to threat in humans. Horm Behav 36:17–24

    Article  PubMed  Google Scholar 

  • van Honk J, Tuiten A, Hermans E, Putnam P, Koppeschaar H, Thijssen J, Verbaten R, van Doornen L (2001) A single administration of testosterone induces cardiac accelerative responses to angry faces in healthy young women. Behav Neurosci 115:238–242

    Article  PubMed  Google Scholar 

  • van Honk J, Peper J, Schutter D (2005) Testosterone reduces unconscious fear but not consciously experienced anxiety: Implications for the disorders of fear and anxiety. Biol Psychiat 58:218–225

    Article  PubMed  CAS  Google Scholar 

  • Vervaecke H, de Vries H, van Elsacker L (2000) Dominance and its behavioral measures in a captive group of bonobos (Pan paniscus). Int J Primatol 21:47–68

    Article  Google Scholar 

  • Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Jacobs JD, Tramontin AD, Perfito N, Meddle S, Maney DL, Soma K (2000) Toward an ecological basis of hormone–behavior interactions in reproduction of birds. In: Wallen K, Schneider JE (eds) Reproduction in context: social and environmental influences on reproduction. MIT Press, Cambridge, pp 85–128

    Google Scholar 

  • Wingfield JC, Moore IT, Goymann W, Wacker DW, Sperry T (2006) Contexts and ethology of vertebrate aggression: implications for the evolution of hormone–behavior interactions. In: Nelson RJ (ed) Biology of Aggression. Oxford University Press, New York, pp 179–210

    Google Scholar 

  • Wirth MM, Schultheiss OC (2007) Basal testosterone moderates responses to anger faces in humans. Physiol Behav 90:496–505

    Article  PubMed  CAS  Google Scholar 

  • Wirth MM, Welsh KM, Schultheiss OC (2006) Salivary cortisol changes in humans after winning or losing a dominance contest depend on implicit power motivation. Horm Behav 49:346–352

    Article  PubMed  CAS  Google Scholar 

  • Wobber V, Hare B, Maboto J, Lipson S, Wrangham R, Ellison PT (2010) Differential changes in steroid hormones before competition in bonobos and chimpanzees. Proc Natl Acad Sci USA 107:12457–12462

    Article  PubMed  CAS  Google Scholar 

  • Wolkowitz OM, Reus VI, Keebler A, Nelson N, Friedland M, Brizendine L, Roberts E (1999) Double-blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry 156:646–649

    PubMed  CAS  Google Scholar 

  • Wood RI (2002) Oral testosterone self-administration in male hamsters: dose–response, voluntary exercise, and individual differences. Horm Behav 41:247–258

    Article  PubMed  CAS  Google Scholar 

  • Wood RI (2004) Reinforcing aspects of androgens. Physiol Behav 83:279–289

    PubMed  CAS  Google Scholar 

  • Wood RI (2008) Anabolic–androgenic steroid dependence? Insights from animals and humans. Front Neuroendocrin 29:490–506

    Article  CAS  Google Scholar 

  • Wood RI, Johnson LR, Chu L, Schad CA, Self DW (2004) Testosterone reward: intravenous and intracerebroventricular self-administration. Psychopharmacology 171:298–305

    Article  PubMed  CAS  Google Scholar 

  • Wrangham R, Pilbeam D (2001) African apes as time machines. In: Galdikas B, Briggs N, Sheeran L, Shapiro G, Goodall J (eds) All apes great and small. Kluwer Publishers, New York, pp 5–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Chichinadze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chichinadze, K., Lazarashvili, A., Chichinadze, N. et al. Testosterone dynamics during encounter: role of emotional factors. J Comp Physiol A 198, 485–494 (2012). https://doi.org/10.1007/s00359-012-0726-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0726-1

Keywords

Navigation