Skip to main content
Log in

The activity of leech motoneurons during motor patterns is regulated by intrinsic properties and synaptic inputs

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The activity of motoneurons during motor patterns depends on their intrinsic properties and on synaptic inputs. This study analyzed the properties of two leech motoneurons: the excitors of dorsal longitudinal muscles (DE-3) and of dorsal and ventral longitudinal muscles (MN-L) in basal conditions (normal and high Mg2+ saline) and during crawling. The voltage–current relationships in DE-3 and MN-L were similar. The curves exhibited the largest slope around resting potential, showed marked inward and outward rectification, and were not affected by high Mg2+. In response to 5-s pulses, DE-3 exhibited a fast initial adaptation, a slow recovery and a very slow late adaptation. High Mg2+ abolished the initial high frequency. The frequency–voltage relationship for the rest of the response was highly similar in normal and in high Mg2+ saline. MN-L exhibited a minor initial adaptation and then fired steadily. High Mg2+ diminished the frequency–voltage relationship. During crawling DE-3 and MN-L fired in phase and their frequency–voltage curves overlapped with the lower end of the curves obtained in basal conditions. The results suggest that the activity of these motoneurons during crawling was regulated, to a large extent, by synaptic inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Angstadt JD, Grassmann JL, Theriault KM, Levasseur SM (2005) Mechanisms of postinhibitory rebound and its modulation by serotonin in excitatory swim motor neurons of the medicinal leech. J Comp Physiol A 191:715–732

    Article  CAS  Google Scholar 

  • Baader AP (1997) Interneuronal and motor patterns during crawling behavior of semi-intact leeches. J Exp Biol 200:1369–1381

    PubMed  CAS  Google Scholar 

  • Baader AP, Kristan WB (1992) Monitoring neuronal activity during discrete behaviors: a crawling, swimming and shortening device for tethered leeches. J Neurosc Meth 43:215–223

    Article  CAS  Google Scholar 

  • Brezina V, Orekhova IV, Weiss KR (2000) The neuromuscular transform: the dynamic, nonlinear link between motor neuron firing patterns and muscle contraction in rhythmic behaviors. J Neurophysiol 83:207–231

    PubMed  CAS  Google Scholar 

  • Brownstone RM, Krawitz S, Jordan LM (2011) Reversal of the late phase of spike frequency adaptation in cat spinal motoneurons during fictive locomotion. J Neurophysiol 105(3):1045–1050

    Article  PubMed  Google Scholar 

  • Buchanan JT (1993) Electrophysiological properties of identified classes of lamprey spinal neurons. J Neurophysiol 70(6):2313–2325

    PubMed  CAS  Google Scholar 

  • Calvino MA, Iscla IR, Szczupak L (2005) Selective serotonin reuptake inhibitors induce spontaneous interneuronal activity in the leech nervous system. J Neurophysiol 93(5):2644–2655

    Article  PubMed  CAS  Google Scholar 

  • Eisenhart FJ, Cacciatore TW, Kristan WB (2000) A central pattern generator underlies crawling in the medicinal leech. J Comp Physiol A 186:631–643

    Article  PubMed  CAS  Google Scholar 

  • Fan RJ, Marin Burgin A, French KA, Friesen WO (2005) A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections. J Comp Physiol A 191(12):1157–1171

    Article  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1957) The action of calcium on the electrical properties of squid axons. J Physiol 137(2):218–244

    PubMed  CAS  Google Scholar 

  • Gorman RB, McDonagh JC, Hornby TG, Reinking RM, Stuart DG (2005) Measurement and nature of firing rate adaptation in turtle spinal neurons. J Comp Physiol A 191(7):583–603

    Article  CAS  Google Scholar 

  • Granit R, Kernell D, Shortess GK (1963) Quantitative aspects of repetitive firing of mammalian motoneurons, caused by injected currents. J Physiology 168:911–931

    CAS  Google Scholar 

  • Hornby TG, McDonagh JC, Reinking RM, Stuart DG (2002) Motoneurons: a preferred firing range across vertebrate species? Muscle Nerve 25(5):632–648

    Article  PubMed  Google Scholar 

  • Hounsgaard J, Kiehn O, Mintz I (1988) Response properties of motoneurons in a slice preparation of the turtle spinal cord. J Physiol 398:575–589

    PubMed  CAS  Google Scholar 

  • Hume RI, Getting PA (1982) Motor organization of Tritonia swimming. III. Contribution of intrinsic membrane properties to flexion neuron burst formation. J Neurophysiol 47(1):91–102

    PubMed  CAS  Google Scholar 

  • Kiehn O, Kjaerulff O, Tresch MC, Harris-Warrick RM (2000) Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Res Bull 53(5):649–659

    Article  PubMed  CAS  Google Scholar 

  • Kristan WB, Stent GS, Ort CA (1974) Neuronal control of swimming in the medicinal leech: III. Impulse patterns of the motor neurons. J Comp Physiol 94:155–176

    Article  Google Scholar 

  • Mangan PS, Curran GA, Hurney CA, Friesen WO (1994) Modulation of swimming behavior in the medicinal leech. III. Control of cellular properties in motor neurons by serotonin. J Comp Physiol A 175:709–722

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  PubMed  CAS  Google Scholar 

  • Marín Burgin A, Szczupak L (1998) Basal acetylcholine release in leech ganglia depolarizes neurons through receptors with a nicotinic binding site. J Expl Biol 201:1907–1915

    Google Scholar 

  • Mason A, Kristan WB (1982) Neuronal excitation, inhibition and modulation of leech longitudinal muscle. J Comp Physiol 146:527–536

    Article  Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (1981) Neurobiology of the leech. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Ort CA, Kristan WB, Stent GS (1974) Neuronal control of swimming in the medicinal leech. J Comp Physiol A 94:121–154

    Article  Google Scholar 

  • Perrier JF, Tresch MC (2005) Recruitment of motor neuronal persistent inward currents shapes withdrawal reflexes in the frog. J Physiol 562(Pt 2):507–520

    PubMed  CAS  Google Scholar 

  • Powers RK, Sawczuk A, Musick JR, Binder MD (1999) Multiple mechanisms of spike-frequency adaptation in motoneurons. J Physiol Paris 93(1–2):101–114

    Article  PubMed  CAS  Google Scholar 

  • Puhl JG, Mesce KA (2008) Dopamine activates the motor pattern for crawling in the medicinal leech. J Neurosci 28(16):4192–4200

    Article  PubMed  CAS  Google Scholar 

  • Rekling JC, Funk GD, Bayliss DA, Dong XW, Feldman JL (2000) Synaptic control of motoneuronal excitability. Physiol Rev 80(2):767–852

    PubMed  CAS  Google Scholar 

  • Rela L, Szczupak L (2003) Coactivation of motoneurons regulated by a network combining electrical and chemical synapses. J Neurosci 23(2):682–692

    PubMed  CAS  Google Scholar 

  • Rodriguez MJ, Iscla IR, Szczupak L (2004) Modulation of mechanosensory responses by motoneurons that regulate skin surface topology in the leech. J Neurophysiol 91:2366–2375

    Article  PubMed  Google Scholar 

  • Rodriguez MJ, Perez-Etchegoyen CB, Szczupak L (2009) Premotor nonspiking neurons regulate coupling among motoneurons that innervate overlapping muscle fiber population. J Comp Physiol A 195:1432–1433

    Article  Google Scholar 

  • Russo RE, Hounsgaard J (1999) Dynamics of intrinsic electrophysiological properties in spinal cord neurones. Prog Biophys Mol Biol 72(4):329–365

    Article  PubMed  CAS  Google Scholar 

  • Sawczuk A, Powers RK, Binder MD (1995) Spike frequency adaptation studied in hypoglossal motoneurons of the rat. J Neurophysiol 73(5):1799–1810

    PubMed  CAS  Google Scholar 

  • Schmidt J, Fischer H, Büschges A (2001) Pattern generation for walking and searching movements of a stick insect leg. II. Control of motoneuronal activity. J Neurophysiol 85(1):354–361

    PubMed  CAS  Google Scholar 

  • Shaw BK, Kristan WB (1995) The whole-body shortening reflex of the medicinal leech: motor pattern, sensory basis, and interneuronal pathways. J Comp Physiol A 177:667–681

    Article  PubMed  CAS  Google Scholar 

  • Stern-Tomlinson W, Nusbaum MP, Perez LE, Kristan WB (1986) A kinematic study of crawling behavior in the leech, Hirudo medicinalis. J Comp Physiol A 158:593–603

    Article  PubMed  CAS  Google Scholar 

  • Stuart AE (1970) Physiological and morphological properties of motoneurons in the central nervous system of the leech. J Physiol 209:627–646

    PubMed  CAS  Google Scholar 

  • Tian J, Iwasaki T, Friesen WO (2009) Analysis of impulse adaptation in motoneurons. J Comp Physiol A 196:123–136

    Article  Google Scholar 

  • Wessel R, Kristan WB, Kleinfeld D (1999) Supralinear summation of synaptic inputs by an invertebrate neuron: dendritic gain is mediated by an “inward rectifier” K+ current. J Neurosci 19(14):5875–5888

    PubMed  CAS  Google Scholar 

  • Wittenberg G, Kristan WB (1992) Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. I. Motor output pattern. J Neurophysiol 68(5):1683–1707

    PubMed  CAS  Google Scholar 

  • Wright TM Jr, Calabrese RL (2011) Contribution of motoneuron intrinsic properties to fictive motor pattern generation. J Neurophysiol 106(2):538–553

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from Agencia Nacional de Investigación Científica y Tecnológica (PICT 2004-1033) and from the University of Buenos Aires (UBACyT X-216) to LS. The authors thank Dr María Ana Calviño, Dr. Lorena Rela, and Mr. Sung Min Yang for helpful discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Szczupak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardo Perez-Etchegoyen, C., Alvarez, R.J., Rodriguez, M.J. et al. The activity of leech motoneurons during motor patterns is regulated by intrinsic properties and synaptic inputs. J Comp Physiol A 198, 239–251 (2012). https://doi.org/10.1007/s00359-011-0704-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0704-z

Keywords

Navigation