Skip to main content
Log in

Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A behavioural gap detection paradigm was used to determine the temporal resolution for song patterns by female crickets, Gryllus bimaculatus. For stimuli with a modulation depth of 100% the critical gap duration was 6–8 ms. A reduction of the modulation depth of gaps to 50% led either to an increase or a decrease of the critical gap duration. In the latter case, the critical gap duration dropped to 3–4 ms indicating a higher sensitivity of auditory processing. The response curve for variation of pulse period was not limited by temporal resolution. However, the reduced response to stimuli with a high duty cycle, and thus short pause durations, was in accordance with the limits of temporal resolution. The critical duration of masking pulses inserted into pauses was 4–6 ms. An analysis of the songs of males revealed that gaps (5.8 ms) and masking pulses (6.9 ms) were at detectable time scales for the auditory pathway of female crickets. However, most of the observed temporal variation of song patterns was tolerated by females. Critical cues such as pulse period and pulse duty cycle provided little basis for inter-individual selection by females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balakrishnan R, Pollack GS (1997) The role of antennal sensory cues in female responses to courting males in the cricket Teleogryllus oceanicus. J Exp Biol 200:511–522

    PubMed  Google Scholar 

  • Benda J, Hennig RM (2008) Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci 24:113–136

    Article  PubMed  Google Scholar 

  • Berger D (2008) The evolution of complex courtship songs in the genus Stenobothrus Fischer, 1853 (Orthoptera, Caelifera, Gomphocerinae). Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen

  • Dent ML, Klump GM, Schwenzfeier C (2002) Temporal modulation transfer functions in the barn owl (Tyto alba). J Comp Physiol A 187:937–943

    Article  Google Scholar 

  • Elliott CJH (1983) Wing hair plates in crickets: physiological characteristics and connections with stridulatory motor neurones. J Exp Biol 107:21–47

    Google Scholar 

  • Elliott CJH, Koch UT, Schäffner KH, Huber F (1982) Wing movements during cricket stridulation are affected by mechanosensory input from wing hair plates. Naturwissenschaften 69:288–289

    Article  Google Scholar 

  • Ferreira M, Ferguson JWH (2002) Geographic variation in the calling song of the field cricket Gryllus bimaculatus (Orthoptera: Gryllidae) and its relevance to mate recognition and mate choice. J Zool Lond 257:163–170

    Google Scholar 

  • Gleich O, Klump GM (1995) Temporal modulation transfer functions in the European Starling (Sturnus vulgaris) II. Responses of auditory-nerve fibres. Hear Res 82:81–92

    Article  PubMed  CAS  Google Scholar 

  • Gottsberger B, Mayer F (2007) Behavioral sterility of hybrid males in acoustically communicating grasshoppers (Acrididae, Gomphocerinae). J Comp Physiol A 193:703–714

    Article  Google Scholar 

  • Heller K-G (2006) Song evolution and speciation in bushcrickets. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, pp 137–152

    Google Scholar 

  • Hennig RM (2009) Walking in Fourier’s space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. J Comp Physiol A 195:971–987

    Article  Google Scholar 

  • Hennig RM, Franz A, Stumpner A (2004) Processing of auditory information in insects. Micr Res Techn 63:351–374

    Article  CAS  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577

    Article  PubMed  CAS  Google Scholar 

  • Kostarakos K, Hennig RM, Römer H (2009) Two matched filters and the evolution of mating signals in four species of cricket. Front Zool 6:22. doi:10.1186/1742-9994-6-22

    Article  PubMed  Google Scholar 

  • Kriegbaum H (1989) Female choice in the grasshopper Chorthippus biguttulus. Naturwissenschaften 76:81–82

    Article  Google Scholar 

  • Kutsch W, Huber F (1970) Zentrale versus periphere Kontrolle des Gesanges yon Grillen (Gryllus campestris). Z vergl Physiologie 67:140–159

    Article  Google Scholar 

  • Levine RB, Truman JW (1982) Metamorphosis of the insect nervous system: changes in morphology and synaptic interactions of identified neurons. Nature 299:250–252

    Article  PubMed  CAS  Google Scholar 

  • Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AVM (2001) Representation of acoustic communication signals by insect auditory receptor neurons. J Neurosci 21:3215–3227

    PubMed  CAS  Google Scholar 

  • Marsat G, Pollack GS (2004) Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. J Neurophysiol 92:939–948

    Article  PubMed  CAS  Google Scholar 

  • Mayer F, Berger D, Gottsberger B, Schulze W (2010) Non-ecological radiations in acoustically communicating grasshoppers? In: Glaubrecht M (ed) Evolution in action. Springer, Berlin, pp 451–464

    Chapter  Google Scholar 

  • Michelsen A (1985) Time resolution in auditory systems. Springer, Heidelberg

    Book  Google Scholar 

  • Nabatiyan A, Poulet JFA, de Polavieja GG, Hedwig B (2003) Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. J Neurophysiol 90:2484–2493

    Article  PubMed  CAS  Google Scholar 

  • Natter R, Robillard T, Amedegnator C, Couloux A, Cruaud C, Desutter-Grandcolas L (2011) Evolution of acoustic communication in the Gomphocerinae (Orthoptera: Caelifera: Acrididae). Zoologica Scripta 40:479–497

    Article  Google Scholar 

  • Pflüger HJ (1999) Neuromodulation during motor development and behavior. Curr Opin Neurobiol 9:683–689

    Article  PubMed  Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    PubMed  CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2005) Auditory orientation in crickets: pattern recognition controls reactive steering. PNAS 102:15665–15669

    Article  PubMed  CAS  Google Scholar 

  • Prinz P, Ronacher B (2002) Temporal modulation transfer functions in auditory receptor fibres of the locust (Locusta migratoria L.). J Comp Physiol A 188:577–587

    Article  CAS  Google Scholar 

  • Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29:437–444

    Article  Google Scholar 

  • Ronacher B, Römer H (1985) Spike synchronization of tympanic receptor fibres in a grasshopper (Chorthippus biguttulus L., Acrididae) A possible mechanism for detection of short gaps in model songs. J Comp Physiol A 157:631–642

    Article  PubMed  CAS  Google Scholar 

  • Ronacher B, Stumpner A (1988) Filtering of behaviourally relevant temporal parameters of a grasshopper’s song by an auditory interneuron. J Comp Physiol A 163:517–523

    Article  Google Scholar 

  • Sabourin P, Gottlieb H, Pollack GS (2008) Carrier-dependent temporal processing in an auditory interneuron. J Acoust Soc Am 123:2910–2917

    Article  PubMed  Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–186

    Article  Google Scholar 

  • Schul J (1998) Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia). J Comp Physiol A 183:401–410

    Article  Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behaviour of the cricket. II. Simplicity of Calling-song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol 146:361–378

    Article  Google Scholar 

  • Trobe D, Schuster R, Römer H (2011) Fast and reliable decisions for a dynamic song parameter in field crickets. J Comp Physiol A 197:131–135

    Article  Google Scholar 

  • Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452

    Article  PubMed  CAS  Google Scholar 

  • Tschuch G (1977) Der Einfluß synthetischer Gesänge auf die Weibchen von Gryllus bimaculatus De Geer (Teil 2). Zool Jb Physiol 81:360–372

    Google Scholar 

  • Tunstall DN, Pollack GS (2005) Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos. J Comp Physiol A 191:363–372

    Article  Google Scholar 

  • von Helversen D, von Helversen O (1994) Forces driving coevolution of song recognition in grasshoppers. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptations. Fortschritte der Zoologie, Fischer, pp 253–284

    Google Scholar 

  • Weber T, Thorson J, Huber F (1981) Auditory behaviour of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J Comp Physiol 141:215–232

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jan Clemens and Bernhard Ronacher for critical reading of the manuscript and Richard Kempter for careful comments on a revised version of the manuscript. We also gratefully acknowledge the skilful assistance by Katja Jaskowiak for the envelope analysis of male songs. The performed experiments comply with the “Principles of animal care”, publication No. 86–23, revised 1985 of the National Institute of Health, and also with the current laws of Germany. Supported by SFB 618 ‘Theoretical Biology’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Hennig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, E., Hennig, R.M. Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus . J Comp Physiol A 198, 181–191 (2012). https://doi.org/10.1007/s00359-011-0698-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0698-6

Keywords

Navigation