Skip to main content
Log in

Regionalization in the eye of the grapsid crab Neohelice granulata (=Chasmagnathus granulatus): variation of resolution and facet diameters

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Crabs have panoramic compound eyes, which can show marked regional specializations of visual acuity. These specializations are thought to be related to the particular features of the animal’s ecological environment. Modern knowledge on the neuroanatomy and neurophysiology of the crabs’ visual system mainly derives from studies performed in the grapsid crab Neohelice granulata (=Chasmagnathus granulatus). However, the organization of the visual sampling elements across the eye surface of this animal had not yet been addressed. We analyzed the sampling resolution across the eye of Neohelice by measuring the pseudopupil displacement with a goniometer. In addition, we measured the facet sizes in the different regions of the eye. We found that Neohelice possesses an acute band of high vertical resolution around the eye equator and an increase in horizontal sampling resolution and lenses diameter towards the lateral side of the eye. Therefore, the analysis of the optical apparatus indicates that this crab possesses greater visual acuity around the equator and at the lateral side of the eye. These specializations are compared with those found in different species of crabs and are discussed in connection to the particular ecological features of Neohelice’s habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Backwell PR, Christy JH, Telford SR, Jennions MD, Passmore NI (2000) Dishonest signalling in a fiddler crab. Proc R Soc Lond B Biol Sci 267:719–724

    Article  CAS  Google Scholar 

  • Berón de Astrada M, Sztarker J, Tomsic D (2001) Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo. J Comp Physiol A 187:37–44

    Article  PubMed  Google Scholar 

  • Berón de Astrada M, Tuthill JC, Tomsic D (2009) Physiology and morphology of sustaining and dimming neurons of the crab Chasmagnathus granulatus (Brachyura: Grapsidae). J Comp Physiol A 195:791–798

    Article  Google Scholar 

  • Berón de Astrada M, Medan V, Tomsic D (2011) How visual space maps in the optic neuropils of a crab. J Comp Neurol 519:1631–1639

    Article  Google Scholar 

  • Christy JH (1988a) Pillar function in the fiddler crab Uca Beebi. (I). Effects on male spacing and aggression. Ethology 78:53–71

    Article  Google Scholar 

  • Christy JH (1988b) Pillar function in the fiddler crab Uca Beebi. (II). Competitive courtship signaling. Ethology 78:113–128

    Article  Google Scholar 

  • Dahmen HJ (1991) Eye specialisation in waterstriders: an adaptation to life in a flat world. J Comp Physiol A 169:623–632

    Article  Google Scholar 

  • Diesel R, Schubart CD, Schuh M (2000) A reconstruction of the invasion of land by Jamaican crabs (Grapsidae: Sesarminae). J Zool 250:141–160

    Article  Google Scholar 

  • Harzsch S (2002) The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 453:10–21

    Article  PubMed  Google Scholar 

  • Harzsch S, Waloszek D (2002) Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: a character to study aspects of arthropod phylogeny. Arthropod Struct Dev 29:307–322

    Article  Google Scholar 

  • Hemmi JM, Zeil J (2003) Burrow surveillance in fiddler crabs. I. Description of behaviour. J Exp Biol 206:3935–3950

    Article  PubMed  Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Philos Trans R Soc Lond B 285:1–59

    Article  CAS  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin, pp 613–756

    Google Scholar 

  • Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne O (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900

    Article  Google Scholar 

  • Land MF (1989) Variations in the structure and design of compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 90–111

    Chapter  Google Scholar 

  • Land M, Layne J (1995a) The visual control of behavior in fiddler crabs. I. Resolution, threshold and the role of the horizon. J Comp Physiol A 177:81–90

    Article  Google Scholar 

  • Land M, Layne J (1995b) The visual control of behavior in fiddler crabs. II. Tracking control systems in courtship and defense. J Comp Physiol A 177:91–103

    Article  Google Scholar 

  • Layne JE (1998) Retinal location is the key to identifying predators in fiddler crabs (Uca pugilator). J Exp Biol 201:2253–2261

    PubMed  CAS  Google Scholar 

  • Layne J, Land M, Zeil J (1997) Fiddler crabs use the visual horizon to distinguish predators from conspecifics: a review of the evidence. J Mar Biol Assoc UK 77:43–54

    Article  Google Scholar 

  • Medan V, Oliva D, Tomsic D (2007) Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus. J Neurophysiol 98:2414–2428

    Article  PubMed  Google Scholar 

  • Nalbach HO (1990) Visually elicited escape in crabs. In: Wiese K, Krent WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Birkhauser Verlag, Basel, pp 165–172

    Google Scholar 

  • Neil DM (1982) Compensatory eye movements. In: Sandeman DC, Atwood HL (eds) The biology of Crustacea, vol 4: neural integration and behavior. Academic, New York, pp 133–163

    Google Scholar 

  • Oliva D, Medan V, Tomsic D (2007) Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J Exp Biol 210:865–880

    Article  PubMed  Google Scholar 

  • Sakai K, Turkay M, Yang SL (2006) Revision of the Helice/Chasmagnathus complex (Crustacea: Decapoda: Brachyura). Abh Senckenberg Naturforsch Ges 565:1–76

    Google Scholar 

  • Sandeman DC (1978) Regionalization in the eye of the crab Leptograpsus variegatus: eye movements evoked by a target moving in different parts of the visual field. Comp Physiol 123:299–306

    Article  Google Scholar 

  • Schwind R (1980) Geometrical optics of the Notonecta eye: adaptations to optical environment and way of life. J Comp Physiol 140:59–68

    Article  Google Scholar 

  • Smolka J, Hemmi JM (2009) Topography of vision and behaviour. J Exp Biol 212:3522–3532

    Article  PubMed  Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin, pp 357–439

    Google Scholar 

  • Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256

    Article  Google Scholar 

  • Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc Biol Sci 276:1929–1937

    Article  PubMed  Google Scholar 

  • Sztarker J, Tomsic D (2004) Binocular visual integration in the crustacean nervous system. J Comp Physiol A 190:951–962

    Google Scholar 

  • Sztarker J, Strausfeld NJ, Tomsic D (2005) Organization of the optic lobes that support motion detection in a semi-terrestrial crab. J Comp Neurol 493:396–412

    Article  PubMed  Google Scholar 

  • Sztarker J, Strausfeld N, Andrew D, Tomsic D (2009) Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus. J Comp Neurol 513:129–150

    Article  PubMed  Google Scholar 

  • Sztarker J, Tomsic D (2011) Brain modularity in arthropods: individual neurons that support “what” but not “where” memories. J Neurosci 22:8175–8180

    Article  Google Scholar 

  • Tomsic D, Berón de Astrada M, Sztarker J (2003) Identification of individual neurons reflecting short- and long-term visual memory in an arthropod. J Neurosci 23:8539–8546

    PubMed  CAS  Google Scholar 

  • Woodbury PB (1986) The geometry of predator avoidance by the blue crab, Callinectes sapidus Rathbun. Anim Behav 34:28–37

    Article  Google Scholar 

  • Zeil J, Al-Mutairi M (1996) The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda). J Exp Biol 199:1569–1577

    PubMed  Google Scholar 

  • Zeil J, Nalbach G, Nalbach HO (1986) Eyes, eyes stalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159:801–811

    Article  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1989) Spatial vision in a flat world: optical and neural adaptations in arthropods. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum, New York, pp 123–137

    Google Scholar 

Download references

Acknowledgments

We thank Angel Vidal for his invaluable help in the construction of the goniometer. We are also grateful to Damián Oliva for inspiring discussions about this work and to Julieta Sztarker for English editing the manuscript. This study was supported by the following research grants to Berón de Astrada M.: Universidad de Buenos Aires 20020090300129, PIP 11220080102457; and to Tomsic D.: Universidad de Buenos Aires X221, ANPCYT PICT 1189. Experimental procedures are in compliance with the Principles of Animal Care of Laboratory Animals published by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Berón de Astrada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berón de Astrada, M., Bengochea, M., Medan, V. et al. Regionalization in the eye of the grapsid crab Neohelice granulata (=Chasmagnathus granulatus): variation of resolution and facet diameters. J Comp Physiol A 198, 173–180 (2012). https://doi.org/10.1007/s00359-011-0697-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0697-7

Keywords

Navigation