Skip to main content
Log in

Bilateral lesions of the medial frontal cortex disrupt recognition of social hierarchy during antiphonal communication in naked mole-rats (Heterocephalus glaber)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PAG:

Periaqueductal gray matter

mFC:

Medial frontal cortex

PBS:

Phosphate-buffered saline

DAB:

3.3′-diaminobenzidine

References

  • Aitken PG (1981) Cortical control of conditioned and spontaneous vocal behavior in rhesus monkeys. Brain Lang 13:171–184

    Article  PubMed  CAS  Google Scholar 

  • Bandler R, Tork I (1987) Midbrain periaqueductal grey region in the cat has afferent and efferent connections with solitary tract nuclei. Neurosci Lett 74:1–6

    Article  PubMed  CAS  Google Scholar 

  • Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575–605

    Article  PubMed  CAS  Google Scholar 

  • Behrend O, Schuller G (2000) The central acoustic tract and audio-vocal coupling in the horseshoe bat, Rhinolophus rouxi. Eur J Neurosci 12:4268–4280

    Article  PubMed  CAS  Google Scholar 

  • Beitz AJ (1982) The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience 7:133–159

    Article  PubMed  CAS  Google Scholar 

  • Bianchi R, Tredici G, Gioia M (1990) The spinal terminals into the midbrain periaqueductal gray of the rat. A light and electron microscope study of the projections ascending via the ventro-lateral funiculus. J Hirnforsch 31:349–358

    PubMed  CAS  Google Scholar 

  • Bragin EO, Yeliseeva ZV, Vasilenko GF, Meizerov EE, Chuvin BT, Durinyan RA (1984) Cortical projections to the periaqueductal grey in the cat: a retrograde horseradish peroxidase study. Neurosci Lett 51:271–275

    Article  PubMed  CAS  Google Scholar 

  • Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101

    Article  PubMed  CAS  Google Scholar 

  • Christoffels IK, Formisano E, Schiller NO (2007) Neural correlates of verbal feedback processing: an fMRI study employing overt speech. Hum Brain Mapp 28:868–879

    Article  PubMed  Google Scholar 

  • Clarke FM, Faulkes CG (1997) Dominance and queen succession in captive colonies of the eusocial naked mole-rat, Heterocephalus glaber. Proc R Soc B 264:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Clarke FM, Faulkes CG (1998) Hormonal and behavioural correlates of male dominance and reproductive status in captive colonies of the naked mole-rat, Heterocephalus glaber. Proc R Soc B 265:1391–1399

    Article  PubMed  CAS  Google Scholar 

  • Domesick VB (1969) Projections from the cingulate cortex in the rat. Brain Res 12:296–320

    Article  PubMed  CAS  Google Scholar 

  • Dujardin E, Jürgens U (2006) Call type-specific differences in vocalization-related afferents to the periaqueductal gray of squirrel monkeys (Saimiri sciureus). Behav Brain Res 168:23–36

    Article  PubMed  Google Scholar 

  • Esposito A, Demeurisse G, Alberti B, Fabbro F (1999) Complete mutism after midbrain periaqueductal gray lesion. Neuroreport 10:681–685

    Article  PubMed  CAS  Google Scholar 

  • Freedman LJ, Insel TR, Smith Y (2000) Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol 421:172–188

    Article  PubMed  CAS  Google Scholar 

  • Hadland KA, Rushworth MFS, Gaffan D, Passingham RE (2003) The effect of cingulate lesions on social behaviour and emotion. Neuropsychologia 41:919–931

    Article  PubMed  CAS  Google Scholar 

  • Hage SR, Jürgens U, Ehret G (2006) Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. Eur J Neurosci 23:3297–3308

    Article  PubMed  Google Scholar 

  • Hardy SG, Leichnetz GR (1981a) Cortical projections to the periaqueductal gray in the monkey: a retrograde and orthograde horseradish peroxidase study. Neurosci Lett 22:97–101

    Article  PubMed  CAS  Google Scholar 

  • Hardy SG, Leichnetz GR (1981b) Frontal cortical projections to the periaqueductal gray in the rat: a retrograde and orthograde horseradish peroxidase study. Neurosci Lett 23:13–17

    Article  PubMed  CAS  Google Scholar 

  • Jarvis JU (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212:571–573

    Article  PubMed  CAS  Google Scholar 

  • Jürgens U (1994) The role of the periaqueductal grey in vocal behaviour. Behav Brain Res 62:107–117

    Article  PubMed  Google Scholar 

  • Jürgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258

    Article  PubMed  Google Scholar 

  • Jürgens U, Ploog D (1970) Cerebral representation of vocalization in the squirrel monkey. Exp Brain Res 10:532–554

    Article  PubMed  Google Scholar 

  • Jürgens U, Pratt R (1979) Role of the periaqueductal grey in vocal expression of emotion. Brain Res 167:367–378

    Article  PubMed  Google Scholar 

  • Jürgens U, von Cramon D (1982) On the role of the anterior cingulate cortex in phonation: a case report. Brain Lang 15:234–248

    Article  PubMed  Google Scholar 

  • Keay KA, Feil K, Gordon BD, Herbert H, Bandler R (1997) Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study. J Comp Neurol 385:207–229

    Article  PubMed  CAS  Google Scholar 

  • Kirzinger A, Jürgens U (1982) Cortical lesion effects and vocalization in the squirrel monkey. Brain Res 233:299–315

    Article  PubMed  CAS  Google Scholar 

  • Kyuhou S, Gemba H (1998) Two vocalization-related subregions in the midbrain periaqueductal gray of the guinea pig. Neuroreport 9:1607–1610

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Ding YQ, Xiong KH, Li JS, Shigemoto R, Mizuno N (1998) Substance P receptor (NK1)-immunoreactive neurons projecting to the periaqueductal gray: distribution in the spinal trigeminal nucleus and the spinal cord of the rat. Neurosci Res 30:219–225

    Article  PubMed  CAS  Google Scholar 

  • MacLean PD, Newman JD (1988) Role of midline frontolimbic cortex in production of the isolation call of squirrel monkeys. Brain Res 450:111–123

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW (1982a) The ascending input to the midbrain periaqueductal gray of the primate. J Comp Neurol 211:50–64

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW (1982b) Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat. J Comp Neurol 206:146–158

    Article  PubMed  CAS  Google Scholar 

  • Marchand JE, Hagino N (1983) Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study. Neuroscience 9:95–106

    Article  PubMed  CAS  Google Scholar 

  • Meller ST, Dennis BJ (1986) Afferent projections to the periaqueductal gray in the rabbit. Neuroscience 19:927–964

    Article  PubMed  CAS  Google Scholar 

  • Neafsey EJ (1993) Anterior cingulate cortex in rodents: connections, viseral control, functions and limplications for emotion. In: Vogt BA (ed) Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhauser, Boston

    Google Scholar 

  • Neafsey EJ, Hurley-Gius KM, Arvanitis D (1986) The topographical organization of neurons in the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus. Brain Res 377:561–570

    Article  Google Scholar 

  • Okanoya K, Merker B (2007) Neural substrates for string-context mutual segmentation: a path to human language. In: Nehaniv CL, Cangelosi A, Lyon C (eds) Emergence of Communication and Language. Springer-Verlag, London, pp 421–434

    Chapter  Google Scholar 

  • Pepper JW, Braude SH, Lacey EA, Sherman PW (1991) Vocalizations of the naked mole-rat. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 243–274

    Google Scholar 

  • Pinkham AE, Penn DL, Perkins DO, Lieberman J (2003) Implications for the neural basis of social cognition for the study of schizophrenia. Am J Psychiatry 160:815–824

    Article  PubMed  Google Scholar 

  • Rudebeck PH, Buckley MJ, Walton ME, Rushworth MFS (2006) A role for the macaque anterior cingulate gyrus in social valuation. Science 313:1310–1312

    Article  PubMed  CAS  Google Scholar 

  • Rudebeck PH, Walton ME, Millette BH, Shirley E, Rushworth MF, Bannerman DM (2007) Distinct contributions of frontal areas to emotion and social behaviour in the rat. Eur J Neurosci 26:2315–2326

    Article  PubMed  Google Scholar 

  • Rushworth MFS, Behrens TEJ, Rudebeck PH, Walton ME (2007) Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci 11:168–176

    Article  PubMed  CAS  Google Scholar 

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biometrics Bull 2:110–114

    Article  CAS  Google Scholar 

  • Shah AA, Treit D (2003) Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res 969:183–194

    Article  PubMed  CAS  Google Scholar 

  • Skultety FM (1962) Experimental mutism in dogs. Arch Neurol 6:235–241

    Article  PubMed  CAS  Google Scholar 

  • Skultety FM (1968) Clinical and experimental aspects of akinetic mutism. Report of a case. Arch Neurol 19:1–14

    Article  PubMed  CAS  Google Scholar 

  • Sutton D, Larson C, Lindeman RC (1974) Neocortical and limbic lesion effects on primate phonation. Brain Res 71:61–75

    Article  PubMed  CAS  Google Scholar 

  • Wood JN (2003) Social cognition and the prefrontal cortex. Behav Cogn Neurosci Rev 2:97–114

    Article  PubMed  Google Scholar 

  • Yosida S, Okanoya K (2009) Naked mole-rat is sensitive to social hierarchy encoded in antiphonal vocalization. Ethology 115:823–831

    Article  Google Scholar 

  • Yosida S, Kobayasi KI, Ikebuchi M, Ozaki R, Okanoya K (2007) Antiphonal vocalization of a subterranean rodent, the naked mole-rat (Heterocephalus glaber). Ethology 113:703–710

    Article  Google Scholar 

Download references

Acknowledgments

Dr. K. Tanaka and Dr. T. Uekita provided advice on statistical modeling, and Dr. Y. Seki provided advice on experimental procedures. The following individuals were involved in the maintenance of the naked mole-rats and contributed worthwhile suggestions: M. Inada, H. Kagawa, T. Mizota, R. Nakagawa, S. Nambu, C. Suzuki, K. Suzuki, Dr. R. Takahashi, Dr. N. Tokimoto, S. Tokin, I. Tomizawa, and R. Yonemoto. This work was supported by Grant-in-Aid 19-285 from the Japan Society for the Promotion of Science Fellows to SY and by Grant-in-Aids for Scientific Research 13035006 and 23240033 to KO, and by JST-ERATO Okanoya Emotional Information Project. The experiments were approved by the Wako Animal Experiment Committee of the Riken Brain Science Institute (H19-2B109 and H21-2-243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Okanoya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yosida, S., Okanoya, K. Bilateral lesions of the medial frontal cortex disrupt recognition of social hierarchy during antiphonal communication in naked mole-rats (Heterocephalus glaber). J Comp Physiol A 198, 109–117 (2012). https://doi.org/10.1007/s00359-011-0692-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0692-z

Keywords

Navigation