Skip to main content
Log in

Acoustic-induced motion of the bushcricket (Mecopoda elongata, Tettigoniidae) tympanum

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Bushcrickets have a tonotopically organised hearing organ, the so-called crista acustica, in the tibia of the forelegs. This organ responds to a frequency range of about 5–80 kHz and lies behind the anterior tympanum on top of a trachea branch. We analyzed the sound-induced vibration pattern of the anterior tympanum, using a Laser-Doppler-Vibrometer Scanning microscope system, in order to identify frequency-dependent amplitude and phase of displacement. The vibration pattern evoked by a frequency sweep (4–79 kHz) showed an amplitude maximum which would correspond to the resonance frequency of an open tube system. At higher frequencies of about 30 kHz a difference in the amplitude and phase response between the distal and the proximal part of the tympanum was detected. The inner plate of the tympanum starts to wobble at this frequency. This higher mode in the motion pattern is not explained by purely acoustic characteristics of the tracheal space below the tympanum but may depend on the mechanical impedance of the tympanum plate. In accordance with a previous hypothesis, the tympanum moves over the whole tested frequency range in the dorso-ventral direction like a hinged flap with the largest displacement in its ventral part and no higher modes of vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CO2 :

Carbon dioxide

DPOAE:

Distortion product otoacoustic emission

References

  • Bailey WJ (1991) Acoustic behaviour of insects: an evolutionary approach. Chapman and Hall, London

    Google Scholar 

  • Bangert M, Kalmring K, Sickmann T, Stephen R, Jatho M, Lakes-Harlan R (1998) Stimulus transmission in the auditory receptor organs of the foreleg of bushcrickets (Tettigoniidae). I. The role of the tympana. Hear Res 115(1–2):27–38

    Article  CAS  PubMed  Google Scholar 

  • Heinrich R, Jatho M, Kalmring K (1993) Acoustic transmission characteristics of the tympanal tracheae of bushcrickets (Tettigoniidae). II. Comparative studies of the tracheae of seven species. J Acoust Soc Am 93(6):3481–3489

    Article  Google Scholar 

  • Hill KG, Oldfield BP (1981) Auditory function in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol A 142:169–180

    Article  Google Scholar 

  • Hoffmann E, Jatho M (1995) The acoustic trachea of Tettigoniids as an exponential horn: theoretical calculations and bioacoustical measurements. J Acoust Soc Am 98(4):1845–1851

    Article  Google Scholar 

  • Kalmring K, Rössler W, Ebendt R, Ahi J, Lakes R (1993) The auditory receptor organs in the forelegs of bushcrickets: physiology, receptor cell arrangement, and morphology of the tympanal and intermediate organs of three closely related species. Zool Jb Physiol 97:75–94

    Google Scholar 

  • Kalmring K, Rössler W, Unrast C (1994) Complex tibial organs in the forelegs, midlegs, and hindlegs of the bushcricket Gampsocleis gratiosa (Tettigoniidae): comparison of the physiology of the organs. J Exp Biol 270:155–161

    Google Scholar 

  • Kleindienst H-U, Wohlers DW, Larsen ON (1983) Tympanal membrane motion is necessary for hearing in crickets. J Comp Physiol A 151:397–400

    Article  Google Scholar 

  • Lakes R, Schikorski T (1990) Neuroanatomy of tettigoniids. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology systematics and evolution. Bathurst, Crawford House, pp 166–190

    Google Scholar 

  • Larsen ON (1981) Mechanical time resolution in some insect ears. J Comp Physiol A 143:297–304

    Article  Google Scholar 

  • Lewis DB (1974) The physiology of the Tettigoniide ear. I. The implications of the anatomy of the ear to its function in sound reception. J Exp Biol 60:821–837

    CAS  PubMed  Google Scholar 

  • Michelsen A, Larsen ON (1978) Biophysics of the ensifera ear. I. Tympanal vibrations in the bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol A 123:193–203

    Article  Google Scholar 

  • Michelsen A, Heller KG, Stumpner A, Rohrseitz K (1994) A new biophysical method to determine the gain of the acoustic trachea in bushcrickets. J Comp Physiol A 175(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Nityananda V, Balakrishnan R (2006) A diversity of songs among morphologically indistinguishable katydids of the genus Mecopoda (Orthoptera: Tettigoniidae) from Southern India. Bioacoustics 15:223–250

    Google Scholar 

  • Nocke H (1975) Physical and physiological properties of the Tettigoniid (“grasshopper”) ear. J Comp Physiol A 100:25–57

    Article  Google Scholar 

  • Römer H, Bailey W (1998) Strategies for hearing in noise: peripheral control over auditory sensitivity in the bushcricket Sciarasaga quadrata (Austrosaginae: Tettigoniidae). J Exp Biol 201(7):1023–1033

    PubMed  Google Scholar 

  • Schuhmacher R (1975) Scanning-Electron-Microscope discrimination of the tympanal organ of Tettigoniidae (Orthoptera, Ensifera). Z Morphol Tiere 81:209–219

    Article  Google Scholar 

  • Schuhmacher R (1979) Zur funktionellen Morphologie des auditiven Systems der Laubheuschrecken (Orthoptera, Tettigoniidae). Entomol Gen 5:321–356

    Google Scholar 

  • Shen J-X (1993) A peripheral mechanism for auditory directionality in the bushcricket Gampsocleis gratiosa: acoustic tracheal system. J Acoust Soc Am 94(3):1211–1217

    Article  Google Scholar 

  • Sickmann T, Kalmring K, Müller A (1997) The auditory–vibratory system of the bushcricket Polysarcus denticauda (Phaneropterinae, Tettigoniidae). I. Morphology of the complex tibial organs. Hear Res 104(1–2):155–166

    Article  CAS  PubMed  Google Scholar 

  • Strauss J, Lakes-Harlan R (2008a) Neuroanatomy and physiology of the complex tibial organ of an atympanate ensiferan, Ametrus tibialis (Brunner von Wattenwyl, 1888) (Gryllacrididae, Orthoptera) and evolutionary implications. Brain Behav Evol 71(3):167–180

    Article  PubMed  Google Scholar 

  • Strauss J, Lakes-Harlan R (2008b) Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae). J Comp Neurol A 511(1):81–91

    Article  Google Scholar 

  • Strauss J, Lakes-Harlan R (2009) The evolutionary origin of auditory receptors in Tettigonioidea: the complex tibial organ of Schizodactylidae. Naturwissenschaften 96(1):143–146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

First and foremost, we would like to thank Prof. Dr. Ernst-August Seyfarth for his support and discussion and Dr. Bernhard Gaese for his support with the statistical procedures. We also thank Arun Palghat Udayashankar for programming and Edeltraut Thielen for technical assistance. This project is supported by a grant of the Deutsche Forschungsgemeinschaft (NO 841/1-1) and stipend from the Jürgen Manchot Stiftung, Ruth Moufang Fonds, Gleichstellungsfonds FB 15 Goethe University and Evangelisches Studienwerk. The performed experiments comply with the current laws of the country in which they were made.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Nowotny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowotny, M., Hummel, J., Weber, M. et al. Acoustic-induced motion of the bushcricket (Mecopoda elongata, Tettigoniidae) tympanum. J Comp Physiol A 196, 939–945 (2010). https://doi.org/10.1007/s00359-010-0577-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0577-6

Keywords

Navigation