Skip to main content
Log in

Localization dominance and the effect of frequency in the Mongolian Gerbil, Meriones unguiculatus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Due to its good low-frequency hearing, the Mongolian Gerbil (Meriones unguiculatus) has become a well-established animal model for human hearing. In humans, sound localization in reverberant environments is facilitated by the precedence effect, i.e., the perceptual suppression of spatial information carried by echoes. The current study addresses the question whether gerbils are a valid animal model for such complex spatial processing. Specifically, we quantify localization dominance, i.e., the fact that in the context of precedence, only the directional information of the sound which reaches the ear first dominates the perceived position of a sound source whereas directional information of the delayed echoes is suppressed. As localization dominance is known to be stimulus-dependent, we quantified the extent to which the spectral content of transient sounds affects localization dominance in the gerbil. The results reveal that gerbils show stable localization dominance across echo delays, well comparable to humans. Moreover, localization dominance systematically decreased with increasing center frequency, which has not been demonstrated in an animal before. These findings are consistent with an important contribution of peripheral-auditory processing to perceptual localization dominance. The data show that the gerbil is an excellent model to study the neural basis of complex spatial-auditory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PE:

Precedence effect

2AFC:

Two alternative forced choice

References

  • Babushkina ES, Poliakov MA (2001) Localization of a sum of acoustic signals in air by the northern fur seal. Biofizika 46:557–562

    CAS  PubMed  Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambrigde

    Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547

    Article  CAS  PubMed  Google Scholar 

  • Burger RM, Pollak GD (2001) Reversible inactivation of the dorsal nucleus of the lateral lemniscus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats. J Neurosci 21:4830–4843

    CAS  PubMed  Google Scholar 

  • Clifton RK (1987) Breakdown of echo suppression in the precedence effect. J Acoust Soc Am 82:1834–1835

    Article  CAS  PubMed  Google Scholar 

  • Colburn HS (1973) Theory of binaural interaction based on auditory-nerve data. I. general strategy and preliminary results on interaural discrimination. J Acoust Soc Am 54:1458–1470

    Article  CAS  PubMed  Google Scholar 

  • Cranford JL (1982) Localization of paired sound sources in cats: effects of variable arrival times. J Acoust Soc Am 72:1309–1311

    Article  CAS  PubMed  Google Scholar 

  • Dent ML, Dooling RJ (2003) Investigations of the precedence effect in budgerigars: effects of stimulus type, intensity, duration, and location. J Acoust Soc Am 113:2146–2158

    Article  PubMed  Google Scholar 

  • Dent ML, Dooling RJ (2004) The precedence effect in three species of birds (Melopsittacus undulatus, Serinus canaria, and Taeniopygia guttata). J Comp Psychol 118:325–331

    Article  PubMed  Google Scholar 

  • Dizon RM, Colburn HS (2006) The influence of spectral, temporal, and interaural stimulus variations on the precedence effect. J Acoust Soc Am 119:2947–2964

    Article  PubMed  Google Scholar 

  • Fitzpatrick DC, Kuwada S, Batra R, Trahiotis C (1995) Neural responses to simple simulated echoes in the auditory brain stem of the unanesthetized rabbit. J Neurophysiol 74:2469–2486

    CAS  PubMed  Google Scholar 

  • Hartung K, Trahiotis C (2001) Peripheral auditory processing and investigations of the “precedence effect” which utilize successive transient stimuli. J Acoust Soc Am 110:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Heffner RS, Heffner HE (1988) Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). Behav Neurosci 102:422–428

    Article  CAS  PubMed  Google Scholar 

  • Keller CH, Takahashi TT (1996) Responses to simulated echoes by neurons in the barn owl’s auditory space map. J Comp Physiol A 178:499–512

    Article  CAS  PubMed  Google Scholar 

  • Kelly JB (1974) Localization of paired sound sources in the rat: small time differences. J Acoust Soc Am 55:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Kittel M, Wagner E, Klump GM (2002) An estimate of the auditory-filter bandwidth in the Mongolian gerbil. Hear Res 164:69–76

    Article  PubMed  Google Scholar 

  • Litovsky RY, Rakerd B, Yin TC, Hartmann WM (1997) Psychophysical and physiological evidence for a precedence effect in the median sagittal plane. J Neurophysiol 77:2223–2226

    CAS  PubMed  Google Scholar 

  • Litovsky RY, Colburn HS, Yost WA, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106:1633–1654

    Article  CAS  PubMed  Google Scholar 

  • Maier JK, Klump GM (2006) Resolution in azimuth sound localization in the Mongolian gerbil (Meriones unguiculatus). J Acoust Soc Am 119:1029–1036

    Article  PubMed  Google Scholar 

  • Maki K, Furukawa S (2005) Acoustical cues for sound localization by the Mongolian gerbil, Meriones unguiculatus. J Acoust Soc Am 118:872–886

    Article  PubMed  Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702–711

    Article  CAS  PubMed  Google Scholar 

  • Moore B (2004) An introduction to the psychology of hearing. Academic Press, Elsevier

    Google Scholar 

  • Parham K, Zhao HB, Kim DO (1996) Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. J Neurophysiol 76:17–29

    CAS  PubMed  Google Scholar 

  • Parham K, Zhao HB, Ye Y, Kim DO (1998) Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes. Hear Res 125:131–146

    Article  CAS  PubMed  Google Scholar 

  • Pecka M, Zahn TP, Saunier-Rebori B, Siveke I, Felmy F, Wiegrebe L, Klug A, Pollak GD, Grothe B (2007) Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments. J Neurosci 27:1782–1790

    Article  CAS  PubMed  Google Scholar 

  • Populin LC, Yin TC (1998) Behavioral studies of sound localization in the cat. J Neurosci 18:2147–2160

    CAS  PubMed  Google Scholar 

  • Shinn-Cunningham BG, Zurek PM, Durlach NI (1993) Adjustment and discrimination measurements of the precedence effect. J Acoust Soc Am 93:2923–2932

    Article  CAS  PubMed  Google Scholar 

  • Shinn-Cunningham BG, Zurek PM, Durlach NI, Clifton RK (1995) Cross-frequency interactions in the precedence effect. J Acoust Soc Am 98:164–171

    Article  CAS  PubMed  Google Scholar 

  • Siveke I, Pecka M, Seidl AH, Baudoux S, Grothe B (2006) Binaural response properties of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus. J Neurophysiol 96:1425–1440

    Article  PubMed  Google Scholar 

  • Siveke I, Ewert SD, Grothe B, Wiegrebe L (2008) Psychophysical and physiological evidence for fast binaural processing. J Neurosci 28:2043–2052

    Article  CAS  PubMed  Google Scholar 

  • Tollin DJ, Henning GB (1999) Some aspects of the lateralization of echoed sound in man. II. The role of the stimulus spectrum. J Acoust Soc Am 105:838–849

    Article  CAS  PubMed  Google Scholar 

  • Tollin DJ, Yin TC (2003) Psychophysical investigation of an auditory spatial illusion in cats: the precedence effect. J Neurophysiol 90:2149–2162

    Article  PubMed  Google Scholar 

  • Tollin DJ, Populin LC, Yin TC (2004) Neural correlates of the precedence effect in the inferior colliculus of behaving cats. J Neurophysiol 92:3286–3297

    Article  PubMed  Google Scholar 

  • Wallach H, Newman EB, Rosenzweig MR (1949) The precedence effect in sound localization. Am J Psychol LXII(3):315–336

    Article  Google Scholar 

  • Wyttenbach RA, Hoy RR (1993) Demonstration of the precedence effect in an insect. J Acoust Soc Am 94:777–784

    Article  CAS  PubMed  Google Scholar 

  • Yapa WB (1994) Social behavour of the mongolian gerbil Meriones unguiculatus with special reference to acoustic communication. PhD Thesis, Fakultät für Biologie, Ludwig-Maximilians Universität München

  • Yost WA, Soderquist DR (1984) The precedence effect: revisited. J Acoust Soc Am 76:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Zurek PM (1980) The precedence effect and its possible role in the avoidance of interaural ambiguities. J Acoust Soc Am 67:953–964

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michael Pecka, Nick Lesica, Benedikt Grothe and two anonymous reviewers for helpful comments on earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Wiegrebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, M., Schuchmann, M. & Wiegrebe, L. Localization dominance and the effect of frequency in the Mongolian Gerbil, Meriones unguiculatus . J Comp Physiol A 196, 463–470 (2010). https://doi.org/10.1007/s00359-010-0531-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0531-7

Keywords

Navigation