Skip to main content

Advertisement

Log in

Lateral line units in the amphibian brain could integrate wave curvatures

  • Short Communication
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Aquatic predators like Xenopus laevis exploit mechano-sensory lateral lines to localise prey on the water surface by its wave emissions. In terms of distance, hypothetically, the source of a concentric wave could be centrally represented based on wave curvatures: for Xenopus, we present a first sample of 98 extracellularly recorded brainstem and midbrain responses to waves with curvatures ranging from 22.2–11.1 m−1. At the frog, concurrently, wave amplitudes and their spectral composition were kept stable. Notably, 61% of 98 units displayed curvature-dependent spike rates, suggesting that wave curvatures could support an extraction of source distances in the amphibian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

c :

Curvature

d :

Distance

LL:

Lateral line

RCF:

Rate-curvature function

SEM:

Standard error of the mean

VS:

Vector strength

References

  • Argac D (2001) Testing hypothesis on coefficients of variation from a series of two-armed experiments. J Appl Stat 32:409–419

    Article  Google Scholar 

  • Behrend O, Branoner F, Zhivkov Z, Ziehm U (2006) Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis. Eur J Neurosci 23:729–744

    Article  PubMed  Google Scholar 

  • Batschelet E (1991) Circular statistics in biology. Academic Press, London

    Google Scholar 

  • Bleckmann H (2008) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158

    Article  CAS  Google Scholar 

  • Bleckmann H, Schwartz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface feeding fish Aplocheilus lineatus (Cyprinodontidae). J Comp Physiol A 145:331–339

    Article  Google Scholar 

  • Bleckmann H, Barth FG (1984) Sensory ecology of a semi-aquatic spider (Dolomedes triton). II. The release of predatory behaviour by water surface waves. Behav Ecol Sociobiol 14:303–312

    Article  Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: anatomy, physiology, and behaviour. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 501–526

    Google Scholar 

  • Bleckmann H (2004) 3-D-orientation with the octavolateralis system. J Physiol Paris 98:53–65

    Article  PubMed  Google Scholar 

  • Brudermanns B, Elepfandt A (2004) Excellent discrimination of the distance of two simultaneous water wave sources by the clawed frog Xenopus laevis laevis. In: Proceedings of 97th congress German zoological society, p 100

  • Buschmann P, Görner P (1990) Distance localization of the center of a surface wave in the clawed toad Xenopus laevis Daudin. In: Proceedings of 18th Göttingen neurobiology conference, Thieme, Stuttgart, p 165

  • Claas B (1993) Wie analysiert das Seitenliniensystem die Laufrichtung von Oberflächenwellen? Habillitation thesis, Universität Bielefeld (in German)

  • Claas B, Münz H (1996) Analysis of surface wave direction by the lateral line system of Xenopus: source localization before and after inactivation of different parts of the lateral line. J Comp Physiol A 178:253–268

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    PubMed  CAS  Google Scholar 

  • Gutsche A, Elepfandt A (2006) Xenopus laevis (African clawed frog). Surface prey capture. Herpetol Rev 37:452

    Google Scholar 

  • Hoin-Radovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon bucholzi (Pantodontidae). Anim Behav 32:840–851

    Article  Google Scholar 

  • Kita H, Armstrong W (1991) A biotin-containing compound N-(2-aminoethyl) biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. J Neurosci Meth 37:141–150

    Article  CAS  Google Scholar 

  • Kroese AB, van der Zalm JM, Vandenbercken BJ (1978) Frequency response of the lateral-line organ of Xenopus laevis. Pflügers Arch 375:167–175

    Article  PubMed  CAS  Google Scholar 

  • Müller U, Schwartz E (1982) Influence of single neuromasts on prey localizing behavior of surface-feeding fish, Aplocheilus lineatus. J Comp Physiol A 149:399–408

    Article  Google Scholar 

  • Nikundiwe AM, Nieuwenhuys R (1983) The cell masses in the brainstem of the South African clawed frog Xenopus laevis: a topographical and topological analysis. J Comp Neurol 213:199–219

    Article  PubMed  CAS  Google Scholar 

  • Van der Want JJL, Klooster J, Nunes–Cardozo B, de Weerd H, Liem RSB (1997) Tract-tracing in the nervous system of vertebrates using horseradish peroxidase and its conjugates: tracers, chromogens, and stabilization for light and electron microscopy. Brain Res Protocols 1:267–279

    Article  Google Scholar 

  • Ziehm U (2006) Lateral line mediated object localization by somatotopic mapping of the azimuth in Xenopus laevis – a modelling approach. Diploma thesis, Humboldt Universität zu Berlin

  • Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung. We are indebted to J. Benda, U. Schneeweiss, and A. Elepfandt. Experiments were approved by the Landesamt für Gesundheit und Soziales Berlin, and comply with the principles of animal care (publication no. 86–23, revised 1985, of the National Institute of Health).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Behrend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrend, O., Branoner, F., Ziehm, U. et al. Lateral line units in the amphibian brain could integrate wave curvatures. J Comp Physiol A 194, 777–783 (2008). https://doi.org/10.1007/s00359-008-0351-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0351-1

Keywords

Navigation