Skip to main content
Log in

Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): III. Peripheral directionality and central nervous processing of spatial cues

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We examined peripheral and central nervous cues underlying the ability of the bushcricket Leptophyes punctatissima to orient to elevated and depressed sound sources broadcasting the female acoustic reply. The peripheral spatial directionality of the ear was measured physiologically using monaural preparations of an auditory interneuron (T-fibre). In the azimuth, maximal interaural intensity differences of 18 dB occur between ipsi- and contralateral stimulation. With increasing elevation or depression of the sound sources, IIDs decrease systematically and reach zero with the source exactly above or below the preparation. Bilateral, simultaneous recordings of the activity of the pair of interneurons allowed determining the binaural discharge differences which occur in response to the extremely short (1 ms) female reply. These discharge differences are large (four action potentials/stimulus) and reliable in the azimuth with lateral stimulation, and decrease gradually with more frontal stimulation. With elevation and depression of sound sources these differences again decrease to one action potential/stimulus at 60° or 75° elevation, and lateral stimulus angles of about 60°. We also calculated the reliability with which a receiver could correctly determine the location of the sound source. We discuss these quantitative measures in relation to the spatial phonotactic behaviour of male L. punctatissima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IID:

Interaural intensity difference

SPL:

Sound pressure level

References

  • Blauert J (1983) Spatial hearing. The psychophysics of human sound localization, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Butler RA, Belendiuk K (1977) Spectral cues utilized in the localization of sound in the medial sagittal plane. J Acoust Soc Am 61:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Ebendt R, Friedel J, Kalmring K (1994) Central projection of auditory receptors in the prothoracic ganglion of the bushcricket Psorodonotus illyricus (Tettigoniidae): computer-aided analysis of the end branching pattern. J Neurobiol 25:35–49

    Article  PubMed  CAS  Google Scholar 

  • Faure PA, Hoy RR (2000a) Neuroethology of the katydid T-Cell. I. Tuning and responses to pure tones. J Exp Biol 203:3225–3242

    PubMed  CAS  Google Scholar 

  • Faure PA, Hoy R (2000b) Neuroethology of the katydid T-Cell. II. Responses to acoustic playback of conspecific and predatory signals. J Exp Biol 203:3243–3254

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM (1996) Monaural and binaural spectral cues created by the external ears of the pallid bat. Hear Res 95:1–17

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. The University of Chicago Press, Chicago

    Google Scholar 

  • Gerhardt HC, Rheinlaender J (1982) Localization of an elevated sound source by the green tree frog. Science 217:663–664

    Article  Google Scholar 

  • Hardt M (1988) Zur Phonotaxis von Laubheuschrecken: Eine vergleichende verhaltensphysiologische und neurophysiologisch-anatomische Untersuchung. PhD Thesis, Ruhr-University Bochum

  • Hartley JC, Robinson DJ (1976) Acoustic behaviour of both sexes of the speckled bush cricket Leptophyes punctatissima. Physiol Entomol 1:21–25

    Google Scholar 

  • Hoy RR, Robert D (1996) Tympanal hearing in insects. Ann Rev Entomol 41:433–450

    Article  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanism of sound localization in the barn owl. J Comp Physiol 133:13–21

    Article  Google Scholar 

  • Konishi M (2003) Coding of auditory space. Annu Rev Neurosci 26:31–55

    Article  PubMed  CAS  Google Scholar 

  • McKay JM (1969) The auditory system of Homorocoryphus (Tettigonioidea, Orthoptera). J Exp Biol 51:787–802

    Google Scholar 

  • Mörchen A, Rheinlaender J, Schwartzkopff J (1978) Latency shift in insect auditory nerve fibers. Naturwiss 65:656

    Article  Google Scholar 

  • Müller P, Robert D (2001) A shot in the dark. The silent quest of a free-flying phonotactic fly. J Exp Biol 204:1039–1052

    PubMed  Google Scholar 

  • Ofner E, Rheinlaender J, Römer H (2007) Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): II. Phonotaxis to elevated sound sources on a walking compensator. J Comp Physiol A 193:321–330

    Article  Google Scholar 

  • Oshinsky ML, Hoy RR (2002) Physiology of the auditory afferents in an acoustic parasitoid fly. J Neurosci 22:7254–7263

    PubMed  CAS  Google Scholar 

  • Payne RS, Roeder KD, Wallmann J (1966) Directional sensitivity of the ears of noctuid moths. J Exp Biol 44:17–31

    PubMed  CAS  Google Scholar 

  • Popper AN, Fay RR (2005) Sound source localization. Springer handbook of auditory research, vol 25. Springer, Heidelberg

    Book  Google Scholar 

  • Pollack G (2000) Who, what, where? Recognition and localization of acoustic signals by insects. Curr Opin Neurobiol 10:763–767

    Article  PubMed  CAS  Google Scholar 

  • Rheinlaender J, Hardt M, Robinson DJ (1986) The directional sensitivity of a bush cricket ear: a behavioural and neurophysiological study of Leptophyes punctatissima. Physiol Entomol 11:309–316

    Google Scholar 

  • Rheinlaender J, Mörchen A (1979) “Time-intensity trading” in locust auditory interneurones. Nature (London) 281:672–674

    Article  Google Scholar 

  • Rheinlaender J, Römer H (1980) Bilateral coding of sound direction in the CNS of the bushcricket Tettigonia viridissima L. (Othoptera, Tettigoniidae). J Comp Physiol A 140:101–111

    Article  Google Scholar 

  • Rheinlaender J, Hartbauer M, Römer H (2007) Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): I. Phonotaxis to elevated and depressed sound sources. J Comp Physiol A 193:313–320

    Article  Google Scholar 

  • Robinson DJ (1980) Acoustic communication between the sexes of the bush cricket Leptophyes punctatissima. Physiol Entomol 5:183–189

    Google Scholar 

  • Robinson DJ, Rheinlaender J, Hartley JC (1986) Temporal parameters of male–female sound communication in Leptophyes punctatissima. Physiol Entomol 11:317–323

    Google Scholar 

  • Römer H (1983) Tonotopic organization of the auditory neuropile in the bushcricket Tettigonia viridissima. Nature 306:60–62

    Article  Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215

    Article  PubMed  Google Scholar 

  • Samson AH, Pollack GS (2002) Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern. J Neurophysiol 88:2322–2328

    Article  PubMed  Google Scholar 

  • Schul J, Sheridan RA (2006) Auditory stream segregation in an insect. Neuroscience 138:1–4

    Article  PubMed  CAS  Google Scholar 

  • Searle CL, Braida LD, Cuddy DR, Davis MF (1975) Binaural pinna disparity: another auditory localization cue. J Acoust Soc Am 57:448–455

    Article  PubMed  CAS  Google Scholar 

  • Stumpner A (1996) Tonotopic organization of the hearing organ in a bushcricket—physiological characterization and complete staining of auditory receptor cells. Naturwiss 83:81–84

    CAS  Google Scholar 

  • Stumpner A (1999) An interneurone of unusual morphology is tuned to the female song frequency in the bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropterinae). J Exp Biol 202:2071–2081

    PubMed  CAS  Google Scholar 

  • Suga N, Katsuki Y (1961) Central mechanisms of hearing in insects. J Exp Biol 38:545–558

    Google Scholar 

  • Wotton JM, Simmons JA (2000) Spectral cues and perception of the vertical position of targets by the big brown bat, Eptesicus fuscus. J Acoust Soc Am 107(2):1034–1041

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach RA, Hoy RR (1997) Spatial acuity of ultrasound hearing in flying crickets. J Exp Biol 200:1999–2006

    PubMed  CAS  Google Scholar 

  • Zimmermann U, Rheinlaender J, Robinson DJ (1989) Cues for male phonotaxis in the duetting bushcricket Leptophyes punctatissima. J Comp Physiol A 164:621–628

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Austrian Science Foundation (FWF), Project P14257-BIO to HR. The experiments reported in this paper comply with the current animal protection law in Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Römer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostarakos, K., Rheinlaender, J. & Römer, H. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): III. Peripheral directionality and central nervous processing of spatial cues. J Comp Physiol A 193, 1115–1123 (2007). https://doi.org/10.1007/s00359-007-0262-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0262-6

Keywords

Navigation