Skip to main content
Log in

Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Decreases in load are important cues in the control of posture and walking. We recorded activities of the tibial campaniform sensilla, receptors that monitor forces as strains in the exoskeleton, in the middle legs of freely moving cockroaches. Small magnets were attached to the thorax and body load was changed by applying currents to a coil below the substrate. Body position was monitored by video recording. The tibial sensilla are organized into proximal and distal subgroups that have different response properties and reflex effects: proximal sensilla excite extensor motoneurons while distal receptors inhibit extensor firing. Sudden load decreases elicited bursts from distal sensilla, while increased load excited proximal receptors. The onset of sensory discharges closely approximated the time of peak velocity of body movement in both load decreases and increases. Firing of distal sensilla rapidly adapted to sustained unloading, while proximal sensilla discharged tonically to load increases. Load decreases of small amplitude or at low rates produced only inhibition of proximal activity while decrements of larger size or rate elicited distal firing. These response properties may provide discrete signals that either modulate excitatory extensor drive during small load variations or inhibit support prior to compensatory stepping or initiation of swing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alsop DM (1978) Comparative analysis of the intrinsic leg musculature of the American cockroach, Periplaneta americana, L. J Morphol 58:199–242

    Article  Google Scholar 

  • Cruse H, Schmitz J, Braun U, Schweins A (1993) Control of body height in a stick insect walking on a treadwheel. J Exp Biol 181:141–155

    Google Scholar 

  • Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J (1998) Walknet—a biologically inspired network to control six-legged walking. Neural Netw 11:1435–1447

    Article  PubMed  Google Scholar 

  • Delcomyn F (1991) Activity and directional sensitivity of leg campaniform sensilla in a stick insect. J Comp Physiol A 168:113–119

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Colombo G (1998) Influence of body load on the gait pattern in Parkinson’s disease. Mov Disord 13:255–261

    Article  PubMed  CAS  Google Scholar 

  • Donelan JM, Pearson KG (2004) Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking. Can J Physiol Pharmacol 82:589–598

    Article  PubMed  CAS  Google Scholar 

  • Dürr V, Schmitz J, Cruse H (2004) Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthro Struct Dev 33:237–250

    Article  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load regulating mechanisms in gait and posture, comparative aspects. Physiol Rev 80:83–133

    PubMed  CAS  Google Scholar 

  • Edin BB (2004) Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. J Neurophysiol 92:3233–3243

    Article  PubMed  Google Scholar 

  • Ekeberg O, Pearson K (2005) Computer simulation of stepping the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J Neurophysiol 94:4256–4268

    Article  PubMed  Google Scholar 

  • Ekeberg O, Blümel M, Büschges A (2004) Dynamic simulation of insect walking. Arthro Struct Dev 33:287–300

    Article  Google Scholar 

  • Full RJ, Blickhan R, Ting LH (1991) Leg design in hexapedal runners. J Exp Biol 158:369–390

    PubMed  CAS  Google Scholar 

  • Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ (1994) Corrective responses to loss of ground support during walking. I. Intact cats. J Neurophysiol 71:603–610

    PubMed  CAS  Google Scholar 

  • Jacobs R, Macpherson JM (1996) Two functional muscle groupings during postural equilibrium tasks in standing cats. J Neurophysiol 76:2402–2411

    PubMed  CAS  Google Scholar 

  • Jöbges M, Heuschkel G, Pretzel C, Illhardt C, Renner C, Hummelsheim H (2004) Repetitive training of compensatory steps: a therapeutic approach for postural instability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:1682–1687

    Article  PubMed  Google Scholar 

  • Kemmerling S, Varjú D (1982) Regulation of the body-substrate-distance in the stick insect: step responses and modelling the control system. Biol Cybern 44:59–66

    Article  Google Scholar 

  • Larsen GS, Frazier SF, Fish SE, Zill S N (1995) Effects of load inversion in cockroach walking. J Comp Physiol A 176:229–238

    Article  PubMed  CAS  Google Scholar 

  • Marchand AR, Liebrock CS, Auriac MC, Barnes WJP, Clarac F (1995) Morphology, physiology and in vivo activity of cuticular stress detector afferents in crayfish. J Comp Physiol A 176:404–424

    Article  Google Scholar 

  • Mazzaro N, Grey MJ, Sinkjær T (2005a) Contribution of afferent feedback to the soleus muscle activity during human locomotion. J Neurophysiol 93:167–177

    Article  PubMed  Google Scholar 

  • Mazzaro N, Grey MJ, Sinkjær T, Andersen JB, Pareyson D, Schieppati M (2005b) Lack of on-going adaptations in the soleus muscle activity during walking in patients affected by large-fiber neuropathy. J Neurophysiol 93:3075–3085

    Article  PubMed  Google Scholar 

  • Moran DT, Rowley JC, Zill SN, Varela F (1976) The mechanism of sensory transduction in a mechanoreceptor. Functional stages in campaniform sensilla during the moulting cycle. J Cell Biol 71:832-847

    Article  PubMed  CAS  Google Scholar 

  • Nelson GM (2002) Learning about control of legged locomotion using a hexapod robot with compliant pneumatic actuators. Doctoral Thesis, Case Western Reserve University

  • Newland PL, Emptage NJ (1996) The central connection and actions during walking of tibial campaniform sensilla in the locust. J Comp Physiol A 178:749–762

    Article  PubMed  CAS  Google Scholar 

  • Noah JA, Quimby L, Frazier SF, Zill SN (2001) Force receptors in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered. J Comp Physiol A 187:769–784

    Article  PubMed  CAS  Google Scholar 

  • Noah JA, Quimby L, Frazier SF, Zill SN (2004a) Walking on a ‘peg leg’: extensor muscle activities and sensory feedback after distal leg denervation in cockroaches. J Comp Physiol A 190:217–231

    Article  CAS  Google Scholar 

  • Noah JA, Quimby L, Frazier SF, Zill SN (2004b) Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. J Comp Physiol A 190:201–215

    Article  CAS  Google Scholar 

  • Pai YC, Maki BE, Iqbal K, McIlroy WE, Perry SD (2000) Thresholds for step initiation induced by support-surface translation: a dynamic center-of-mass model provides much better prediction than a static model. J Biomech 33:387–392

    Article  PubMed  CAS  Google Scholar 

  • Pang MY, Yang JF (2000) The initiation of the swing phase in human infant stepping: importance of hip position and leg loading. J Physiol 528:389–404

    Article  PubMed  CAS  Google Scholar 

  • Pang MY, Yang JF (2002) Sensory gating for the initiation of the swing phase in different directions of human infant stepping. J Neurosci 22:5734–5740

    PubMed  CAS  Google Scholar 

  • Perry SD, McIlroy WE, Maki BE (2000) The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation. Brain Res 877:401–406

    Article  PubMed  CAS  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    PubMed  CAS  Google Scholar 

  • Pratt CA (1995) Evidence of positive force feedback among hindlimb extensors in the intact standing cat. J Neurophysiol 73:2578–2583

    PubMed  CAS  Google Scholar 

  • Pringle JWS (1938) Proprioception in insects. II The action of the campaniform sensilla on the legs. J Exp Biol 15:114–131

    Google Scholar 

  • Quimby L, Zill SN (2004) Tuning posture and locomotion to body load: Common mechanisms of load sensing and disecrete changes in motor activities in walking in cockroaches. Society for Neuroscience Abstracts 30, program no. 658.13

  • Quimby L, Amer A, Zill SN (2006) Common motor mechanisms support body weight in serially homologous legs of cockroaches in posture and locomotion. J Comp Physiol A 192:247–266

    Article  Google Scholar 

  • Ridgel A, DiCaprio R, Frazier S, Zill S (1999) Active signaling of leg loading and unloading in the cockroach. J Neurophysiol 81:1432–1437

    PubMed  CAS  Google Scholar 

  • Ridgel AL, Frazier SF, DiCaprio RA, Zill SN (2000) Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion. J Comp Physiol A 186:359–374

    Article  PubMed  CAS  Google Scholar 

  • Ridgel AL, Frazier SF, Zill SN (2001) Dynamic responses of tibial campaniform sensilla studied by substrate displacement in freely moving cockroaches. J Comp Physiol A 187:405–420

    Article  PubMed  CAS  Google Scholar 

  • Ridgel AL, Frazier SF, Zill SN (2003) Post-embryonic development of cuticular caps of campaniform sensilla of the cockroach leg: potential implications in scaling force detection. Arthro Struct Dev 32:167–173

    Article  Google Scholar 

  • Ritzmann RE, Quinn RD, Watson JT, Zill SN (2000) Insect walking and bio-robotics: a relationship with mutual benefits. Bioscience 50:23–33

    Article  Google Scholar 

  • Schmitz J (1986a) The depressor trochanteris motoneurons and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus. Biol Cybern 55:25–34

    Article  Google Scholar 

  • Schmitz J (1986b) Properties of the feedback system controlling the coxa-trochanter joint in the stick insect Carausius morosus. Biol Cybern 55:35–42

    Article  Google Scholar 

  • Sinkjaer T, Andersen JB, Ladouceur M, Christensen LO, Nielsen JB (2000) Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol 523:817–827

    Article  PubMed  CAS  Google Scholar 

  • Ting LH, Macpherson JM (2004) Ratio of shear to load ground-reaction force may underlie the directional tuning of the automatic postural response to rotation and translation. J Neurophysiol 92:808–823

    Article  PubMed  Google Scholar 

  • Trulsson M (2001) Mechanoreceptive afferents in the human sural nerve. Exp Brain Res 137:111–116

    Article  PubMed  CAS  Google Scholar 

  • Welch TDJ, Ting LH (2005) The initial burst of the human automatic postural response scales with the perturbation acceleration and velocity during quiet stance. Society for Neuroscience Abstracts 31, program no. 56.11

  • Zill SN (1993) Mechanisms of load compensation in insects: swaying and stepping strategies in posture and locomotion. In: Beer R, Ritzmann R, McKenna T (eds) Biological neural networks in invertebrate neuroethology and robotics. Academic, San Diego, pp 43–68

    Google Scholar 

  • Zill SN, Moran DT (1981a) The exoskeleton and insect proprioception. I. Responses of tibial campaniform sensilla to external and muscle generated forces in the American cockroach, Periplaneta americana. J Exp Biol 91:1–24

    Google Scholar 

  • Zill SN, Moran DT (1981b) The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the American cockroach Periplaneta americana. J Exp Biol 94:57-75

    Google Scholar 

  • Zill SN, Moran DT, Varela FG (1981) The exoskeleton and insect proprioception. II. Activity of tibial campaniform sensilla in the American cockroach Periplaneta americana. J Exp Biol 94:43-55

    Google Scholar 

  • Zill SN, Frazier SF, Lankenau J, Jepson-Innes KA (1992) Characteristics of dynamic postural reactions in the locust hindleg. J Comp Physiol A 170:761–772

    Article  PubMed  CAS  Google Scholar 

  • Zill S, Schmitz J, Büschges A (2004) Load sensing and control of posture and locomotion. Arthro Struct Dev 33:273–286

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant IBN-0235997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasha N. Zill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, B.R., Duke, E.R., Amer, A.S. et al. Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches. J Comp Physiol A 193, 881–891 (2007). https://doi.org/10.1007/s00359-007-0241-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0241-y

Keywords

Navigation